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Abstract

This document contains what I intend to cover in the preparatory workshop for the
NYU Courant January 2026 complex variables written exams. An emphasis is placed
on using key ideas and theorems to solve problems. Thus, most proofs of the main
theorems are omitted, unless the proof is particularly enlightening or may appear on
the exam. The exact topics covered on each day of the workshop may change depending
on how fast/slow we can work through the material.
The date this document was last updated is listed in the top-right corner of each page.
The references I used to structure these notes are Brown & Churchill’s Complex Vari-
ables and Applications [1] and Stein & Shakarchi’s Complex Analysis [2].
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Day 1: Review & Differentiation

1.1 Notation and Review

We will define the complex plane by

C = {x+ iy : x, y ∈ R} ∼= R2,

where i2 = −1. We write z ∈ C to mean that there exists x, y ∈ R such that z = x + iy.
We write x = Rez and y = Imz, saying that x and y are the real and imaginary parts of z,
respectively. Addition, multiplication, and division are defined as one would expect,

(x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2)

(x1 + iy1)(x2 + iy2) = (x1x2 − y1y2) + i(x1y2 + x2y1)

x1 + iy1
x2 + iy2

=
(x1 + iy1)(x2 − iy2)

x2
2 + y22

.

We will denote the modulus of a complex number z by the usual Euclidean norm

|z| =
√
x2 + y2

and complex conjugation by
z = x− iy.

It is often convenient to express a complex number in polar form, z = reiθ, where r = |z|,
θ = arg(z), and

eiθ = cos(θ) + i sin(θ).

Example 1.1: Find all cube roots of 1 + i.

Solution. Write z3 = 1 + i =
√
2ei(π/4+2πk), to find that

z = 21/6eπ/12, 21/6e3π/4, 21/6e17π/12.

■

We define the principal argument of z, denoted by Arg(z), to be the unique value in (−π, π]
such that

arg(z) = Arg(z) + 2πn ∀n ∈ Z.

While it is true that arg(z1z2) = arg(z1) + arg(z2), this is not necessarily true for Arg (you
should find a counterexample).

Note that the definition of eiθ immediately gives a definition of the complex exponential
function ez as

ez = exeiy = ex(cos(y) + i sin(y)).

In these notes, any non-empty, open, connected set D is called a domain.
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1.2 Analytic Functions

1.2.1 Derivatives of Complex Functions

A function f : S ⊆ C → C can be decomposed into real component functions u, v via

f(z) = f(x+ iy) = u(x, y) + iv(x, y).

The notions of limits and continuity are defined as one would on a metric space, so we will
move right on to discussing differentiation of complex functions.

The derivative of f at a point z0 ∈ C is defined as

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0
.

Taking δz = z − z0, this is equivalent to

f ′(z0) = lim
δz→0

f(z0 + δz)− f(z0)

δz
.

The classical example of a complex function that is not differentiable is the following:

Example 1.2: The conjugation map z 7→ z is not differentiable at the origin.

Solution: Assume instead f(z) = z were to be differentiable at z = 0. Then the limit of the
difference quotient exists on any path. Comparing the paths (δx, 0) and (0, δy), we find a
contradiction.

■

We note that linearity, the Leibnitz rule, the quotient rule, and the chain rule are all true
for differentiable complex functions.

It is also important to note that complex differentiation is not the same as differentiation
in R2. Namely, differentiation in R2 is like linearization, while complex differentiation is
about angle preservation.

Exercise 1.1: Consider the maps f(x, y) = x and g(z) = Re(z). Show that f is
differentiable as a map from R2 → R2 but g is not complex differentiable.

1.2.2 Cauchy-Riemann Equations

Perhaps the most important system of partial differential equations (PDEs) in complex
analysis are the Cauchy-Riemann equations :
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Theorem 1.1 (C-R Equations)

Suppose f = u + iv is differentiable at a point z0 = z0 + iy0. Then the first order
partial derivatives of u, v must exist at (x0, y0), and they satisfy the Cauchy-Riemann
equations

ux = vy, uy = −vx.

Moreover,
f ′(z0) = ux(x0, y0) + ivx(x0, y0).

The idea in deriving the C-R equations is to again look at the limit definition of the derivative
along the paths (δx, 0) and (0, δy).

It is important to note that the converse statement is generally not true without additional
assumptions on u and v.

Theorem 1.2

Suppose that f = u + iv is defined in some neighbourhood of a point z0 = x0 + iy0,
and that u, v are continuously differentiable in the neighbourhood and satisfy the C-R
equations at (x0, y0). Then f ′(z0) exists, with

f ′(z0) = ux(x0, y0) + ivx(x0, y0).

This result is the first instance where we see the importance of the local existence of the
derivative. We will soon come back to this when we discuss analyticity and integration.

We quickly note that, in polar coordinates, the C-R equations become

rur = uθ, uθ = −rvr.

1.2.3 Analyticity

We say that f is holomorphic (or analytic) at a point z0 if there exists a neighbourhood of
z0 such that f is differentiable at each point in that neighbourhood. If f is defined on an
open set, it is called holomorphic on that set if it is differentiable at each point. A function
is called entire if it is defined and holomorphic on all of C. Given a domain D, the set of
holomorphic functions on D is denoted by H(D).

We note that every holomorphic function on a domain D satisfies the C-R equations, and the
previous theorems can also be used to prove a function is holomorphic. Another important
fact is that if f is holomorphic in a domain D, then the component functions u and v are
harmonic:

∆u,∆v = 0, where ∆ = ∂xx + ∂yy.

In fact, more can be said, but we first need the following definition. If u, v are harmonic in
D and satisfy the C-R equations, then v is called a harmonic conjugate of u.
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Theorem 1.3

A function f = u + iv is holomorphic in a domain D if and only if v is a harmonic
conjugate of u.

Example 1.3: Let u(x, y) = x2 − y2. Find a harmonic conjugate of u.

Solution: First, note that it is easy to see that u is harmonic. If v is a harmonic conjugate
of u, then

vx = −uy = 2y, vy = ux = 2x.

Integrating, we see that v(x, y) = 2xy works.

■

Exercise 1.2: Let u(x, y) = ex(x cos(y)− y sin(y)).
(a) Show that u is harmonic on R2.
(b) Find a harmonic function v such that f = u+ iv is holomorphic on C.
(c) Express f(z) explicitly as a function of z, where z = x+ iy.

Example 1.4 (January 2017, Problem 1): Define the function

f(z) =

{
exp
(
− 1

z4

)
z ̸= 0

0 z = 0

1. Show that f satisfies the Cauchy-Riemann equations on C.
2. Is f entire?

Solution:

(a) First note that, away from z = 0, f is the composition of holomorphic functions. Hence,
f satisfies the C-R equations if z ̸= 0.

Since we are considering the point (x, y) = (0, 0), it suffices to compute the partial derivatives
along x = 0 and y = 0. Decomposing f as f = u+ iv, it is easy to see that along the axes we
have v ≡ 0. Meanwhile, u(x, 0) = exp(−1/x4), u(0, y) = exp(−1/y4). It is a straightforward
computation using L’Hopital to show that ux(0, 0) = uy(0, 0) = 0.

(b) We show f is not continuous at the origin, which proves f is not holomorphic there. To
see this, we compute the limit of f as z → 0 along the line x = y. Writing z = reiπ/4, this
becomes

lim
r→0

f(reiπ/4) = lim
r→0

exp

(
1

r4

)
= ∞ ̸= 0 = f(0).

■
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Example 1.5: Let f(z) = u+ iv be a holomorphic function on some domain D ⊆ C.
Assume there exists Φ ∈ C1(R2 → R) such that

Φ(u(x, y), v(x, y)) = 0 ∀z = x+ iy ∈ D.

Assume further that ∇Φ ̸= 0 on f(D). Show that f is a constant.

Solution: Differentiating Φ(u, v) = 0 with respect to x and y and using the C-R equations,
we find that

∂Φ

∂u

∂u

∂x
+

∂Φ

∂v

∂v

∂x
= 0

∂Φ

∂v

∂u

∂x
− ∂Φ

∂u

∂v

∂x
= 0.

This is a system of equations where the determinant of the coefficient matrix is −(Φ2
u+Φ2

v) ̸=
0 on f(D). Thus, this system only has the trivial solution for all z ∈ D, so that

f ′(z) = ux + ivx = 0 ∀z ∈ D.

Hence, f is a constant.

■

Example 1.6: Let f : D → C be holomorphic, D a domain. Suppose there exists a
constant α ∈ R such that

arg(f ′(z)) = α ∀z ∈ D\{f ′(z) = 0}.

Show that f is of the form f(z) = a+ bz for some a, b ∈ C.

Solution: We will use that derivatives of holomorphic functions are holomorphic (we will
discuss this more later). Since f ′ lives on the ray at the angle α, we can write

f ′(z) = |f ′(z)|eiα.

Define g(z) = e−iαf(z). Since f is holomorphic on D, so is g. Moreover, g′(z) = |f ′(z)|, so
g′ is a real-valued holomorphic function. In particular, the C-R equations guarantee that g′

is a constant. Integrating (which we will also discuss later), we see that g(z) is affine.

■

Example 1.7 (September 2013, Problem 2): Let z = x+ iy, f = f(z) = u+ iv.
Assume D is a domain in C, f ∈ C2(D). Denote

Df =

(
∂xu ∂yu
∂xv ∂yv

)
.

7
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Suppose for every z ∈ D that

Df(z)TDf(z) = λ(z)I,

where I is the 2× 2 identity matrix. Show that either f or f is holomorphic in D.

Solution: Since DfTDf = λI, we have that

(∂xu)
2 + (∂yv)

2 = λ = (∂yu)
2 + (∂yv)

2,

(∂xu)(∂yu) + (∂xv)(∂yv) = 0.

Note that the second condition is saying that the columns of Df are orthogonal, while the
first says that they have the same length (and λ is a non-negative function). Therefore, each
column is precisely a rotation of the other by π/2 or −π/2.

Let f1 and f2 denote the first and second column of Df , respectively. If f2 is a rotation by
π/2 of f1, then (

uy

vy

)
=

(
−vx
ux

)
.

Thus, the Cauchy-Riemann equations are satisfied, and f is holomorphic.

If instead f2 is a rotation by −π/2 of f1, a similar argument shows f is antiholomorphic.
Therefore, for every point z ∈ D, either f is holomorphic or f is antiholomorphic.

To conclude that only one of these cases can be true on all of D, we need to apply the
identity theorem (which we will see later). For now, let us assume the following fact: All
zeros of a non-constant holomorphic function on a connected region are isolated.

Let J(z) = det (Df) denote the determinant of the Jacobian of f . Since f ∈ C2, we have
that J ∈ C1. If z0 ∈ D is such that f is holomorphic, then by the C-R equations,

J(z0) = uxvy − uyvx = ux(ux)− uy(−uy) = u2
x + u2

y = λ(z0) ≥ 0.

Likewise, if z1 ∈ D is such that f is antiholomorphic,

J(z1) = −(u2
x + u2

y) = −λ(z1) ≤ 0.

SinceD is connected, we can apply the intermediate value theorem to conclude that J attains
zero at least once. However, if λ(z∗) = 0, this implies that

ux, uy, vx, vy = 0.

Let us deal with this more precisely. Let

U = {z ∈ D : J(z) > 0}
V = {z ∈ D : J(z) < 0}.

8
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Note that, by the intermediate value theorem, U and V cannot consist of isolated points.
Moreover, by continuity, U and V are open. Define also

Γ = {z ∈ D : J(z) = 0}

If Γ contained an open set, then by analytic continuation f would be constant on D, so we
can assume this is not the case. Assume U and V are both non-empty. Since D is connected,
one cannot pass from U to V without intersecting Γ.

Let g(z) = f ′(z) for all z ∈ D. Then g is holomorphic in U , continuous on U , and vanishes
on Γ ∩ ∂U . If Γ has an accumulation point, then the identity theorem would ensure that g
vanishes on all of U , so that f is constant. Thus, Γ can only consist of isolated points. But
then D\Γ would still be connected, contradicting the intermediate value theorem applied to
J (since then the image would be the union of the disjoint intervals (−∞, 0) and (0,∞)!).
Hence, either U = D or V = D.

■

Example 1.8 (September 2024, Problem 5): Suppose f : D → C is harmonic,
0 /∈ f(D), and 1/f is also harmonic. Show that f or f is holomorphic.

Solution: Recall that f is harmonic if

∆f = 4
∂

∂z

∂

∂z
f = 0,

where
∂

∂z
=

1

2

(
∂

∂x
− i

∂

∂y

)
,

∂

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)
.

Computing ∆(1/f), we find that

0 = ∆

(
1

f

)
=

2

f 3

(
∂f

∂z

)(
∂f

∂z

)
− 1

f 2
∆f =

2

f 3

(
∂f

∂z

)(
∂f

∂z

)
.

Thus, given z ∈ D, either ∂f
∂z

= 0 or ∂f
∂z

= 0. By the identity theorem, exactly one of these
must hold for all z ∈ D. That is, by the C-R equations, either f is antiholomorphic (the
first case) or holomorphic (the second case).

■

Exercise 1.3 (September 2023, Problem 4): A complex function w = W (z) can
be expressed in polar coordinates: if w = seiγ and z = reiθ, then the two real functions
of two real variables

s = S(r, θ), γ = Γ(r, θ)

specify w = W (z). Without changing to Cartesian coordinates, find necessary condi-
tions on S and Γ for W to have a derivative W ′ at any point z ̸= 0.

9
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1.3 Elementary Functions

Let us make a quick detour to discuss how the exponential, logarithmic, and trigonometric
functions generalize to the complex plane.

1.3.1 The complex logarithm

We already defined the complex exponential ez = exeiy. However, ez is periodic with period
2πi, so it is not entirely clear how to define the logarithm such that the logarithm is not
multivalued. We define, for z ̸= 0,

log(z) = log(|z|) + i arg(z) = log(|z|) + i(Arg(z) + 2πk) ∀k ∈ Z.

Then it follows that elog(z) = z. However,

log(ez) = z + 2πki ∀k ∈ Z.

Therefore, we define the principal value of the logarithm as

Log(z) = log(|z|) + iArg(z).

The function Log(z) is then well-defined and single-valued for z ̸= 0. It is straightforward
to verify that Log(z) is continuous on the domain

D = {z = reiθ ∈ C : r > 0, −π < θ < π}.

Moreover, one can check that Log(z) satisfies the C-R equations on D, so it is also holo-
morphic. The derivative of Log(z) is, as one might expect, 1/z. More generally, log(z) is
analytic on the domain

Dα = {z = reiθ ∈ C : r > 0, α < θ < α + 2π}.

The line θ = α is called a branch cut of the logarithm, and this definition extends naturally
to other multi-valued functions. An single-valued analytic function F that extends to a
multi-valued function f is called a branch of f . The principal value of the logarithm is often
called the principal branch of log(z).

It is now reasonable to define exponentiation of a complex number by another complex
number, via zc = ec log(z).

Example 1.9: Express (1 + i)−i in the form x+ iy for some real x, y.

Solution: We write

(1 + i)−i = e−i log(1+i) = e−i(log(
√
2)+i(π/4+2πk)) = eπ/4+2πk

(
cos
(
log

√
2
)
− i sin

(
log

√
2
))

.

■
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Exercise 1.4 (September 2002, Problem 1): Find the real and imaginary parts
of the complex number (1 + i)i.

Exercise 1.5 (September 2005, Problem 1):
(a) Determine all complex numbers z such that iz has a finite numbers of values.
(b) Same question for ii

z
.

1.3.2 Trigonometric & hyperbolic functions

We define the complex sine and cosine functions by

sin(z) =
eiz − e−iz

2i
, cos(z) =

eiz + e−iz

2
,

and the hyperbolic sine and cosine by

sinh(z) =
ez − e−z

2
, cosh(z) =

ez + e−z

2
.

A direct consequence of these definitions are the identities

sin(z) = −i sinh(iz), cos(z) = cosh(iz), sinh(z) = −i sin(iz), cosh(z) = cos(iz).

1.4 Power Series

Recall that an analytic function on R is any function that can locally be defined as a con-
vergent power series, and any such function is infinitely differentiable. We can extend this
definition to complex functions.

A power series is a series expansion of the form

∞∑
k=0

akz
k

for some coefficients ak ∈ C.

Theorem 1.4 (Radius of Convergence)

For any power series
∑∞

k=0 akz
k, there exists a radius of convergence R ∈ [0,∞] such

that the series converges in the open disk |z| < R and diverges in the open region
|z| > R. Moreover, R can be found via the formulas:

1/R = lim sup
n→∞

|an|1/n (Root Test)

1/R = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ (Ratio Test)

11
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One can show that every power series defined a holomorphic function on its radius of conver-
gence. More generally, any analytic function on an open set is holomorphic on that set. The
derivative of a power series is, of course, obtained by term-by-term differentiation. However,
the proof is not entirely trivial. Note that holomorphic functions are also analytic, but the
proof relies on integration results concerning holomorphic functions which we will cover in
Day 2.

Example 1.10 (January 2016, Problem 2): Consider the power series

f(z) =
∞∑
k=0

(−1)kz2k.

Determine the radius of convergence of f(z). Does f have an analytic continuation to
any region beyond this disk of convergence? Justify.

Solution: By the root test, we compute

1/R = lim sup
n→∞

|ak|1/k = 1,

so f(z) converges in the disk |z| < 1. Observe now that

f(z) =
∞∑
k=0

(−1)kz2k =
∞∑
k=0

(−z2)k =
1

1 + z2
.

The function g(z) = 1/(1 + z2), defined on C\{i,−i} then agrees with f(z) on the disk
|z| < 1, so by analytic continuation (the identity theorem), f can be extended to g(z).

■

Exercise 1.6 (September 2003, Problem 2): By analytic continuation beyond
the disk |z + 1| < 1, determine limz→1 f(z), where f(z) is the analytic function defined
in the disk |z + 1| < 1 by

f(z) =
∞∑
n=0

(n+ 1)(n+ 2)(z + 1)n.

12
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Day 2: Complex Integration & Residues

2.1 Contour Integrals

Of particular importance in complex analysis are integrals over closed curves. Before review-
ing the key theorems about the integral of a holomorphic function over a closed curve, let
us review contour integration.

We define a curve C in C as a continuous function γ : [0, 1] → C with γ(t) = x(t)+iy(t). The
point γ(0) is called the initial point and γ(1) the terminal point. If the initial and terminal
points are the same, the curve is called closed. Note that we could replace [0, 1] in the
definition with any real closed interval [a, b] with a < b. The curve γ is called differentiable
if the component functions x and y are continuously differentiable functions of t, with

γ′(t) = x′(t) + iy′(t),

and such that γ′(t) ̸= 0 for all t ∈ [0, 1]. A contour is any piecewise differentiable curve. We
are mostly interested in simple curves, that is, curves that do not intersect themselves. We
use the term positively oriented to describe a curve that is oriented in the counterclockwise
direction.

Given a contour C parametrized by γ on [a, b], we define∫
C

f =

∫
C

f(z) dz :=

∫ b

a

f(γ(t))γ′(t) dt.

Exercise 2.1: Compute the integral I =
∫
C
z dz when C is given by the curve z = 2eiθ,

where θ ∈ [−π/2, π/2].

Example 2.1: Compute the integral I =
∫
C

√
z dz where C is the quarter-circle arc

from z = 1 to z = i and the integrand is taken with the principal branch.

Solution: The contour C here is parametrized by the curve γ(t) = eit for t ∈ [0, π/2]. We
have

I =

∫ π/2

0

eit/2(ieit) dt = i

∫ π/2

0

ei(3t/2) dt =
2

3

(
− 1√

2
− 1 + i

1√
2

)
.

■

Exercise 2.2: Redo Example 2.1 where the branch is given by π < θ < 3π. Why is
your answer different?

2.2 Analyticity and Integration

In this section, we will demonstrate how analyticity is a much stronger property than mere
differentiability. It is likely that a significant portion of the written exam will require the
use of the main results of this section, either explicitly or implicitly.

13
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2.2.1 Antiderivatives & Cauchy’s Theorem

We begin with the antiderivative theorem:

Theorem 2.1 (Antiderivative Theorem)

Let f be continuous on a domain D. Then the following are equivalent:

(i) f(z) has an antiderivative F (z) in D;

(ii) The contour integral of f from z1 to z2 in D is independent of path. More
specifically, ∫

Γ

f = F (z2)− F (z1)

for any contour Γ from z1 to z2;

(iii) For any closed contour C in D, ∫
C

f = 0.

Example 2.2: Evaluate the integral
∫
γ
zez dz, where γ is the path parametrized by

γ(t) = t+ i sin2(πt) for t ∈ [0, 1].

Solution: The integrand as antiderivative (z − 1)ez, so we simply evaluate∫
γ

zez dz = (z − 1)ez|z=1
z=0 = 1.

■

Exercise 2.3: Let g(z) = 1/z, defined on D = C\{0}. Show that g does not have an
antiderivative in D.

Perhaps the most important theorem in complex analysis is Cauchy’s theorem (also known
as Goursat’s theorem, or Cauchy-Goursat):

Theorem 2.2 (Cauchy-Goursat)

Let D ⊆ C be a domain whose boundary is given by a simple contour C = ∂D.
Suppose f ∈ H(D) ∩ C(D). Then ∫

∂D

f = 0.

In particular, for any simple contour C ⊆ D, the integral of f over C vanishes. Combined
with the antiderivative theorem, this shows that every holomorphic function on D admits
an antiderivative on D.

14
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An immediate corollary of Cauchy’s theorem is the “holes theorem,” which allows one to
reduce the integral of f around C to the sum of integrals around smaller contours Ck which
contain the “holes” of the domain D. More precisely, if Ck are positively-oriented simple
closed contours in D such that f is analytic in D\

⋃N
k=1Ck, then∫

∂D

f =
N∑
k=1

∫
Ck

f.

2.2.2 Cauchy’s Integral Formula

The first consequence of Cauchy’s theorem is the Cauchy Integral Formula (CIF).

Theorem 2.3 (Cauchy Integral Formula)

LetD be a domain bounded by a simple closed contour ∂D. Suppose f ∈ H(D)∩C(D).
Then for every z0 ∈ D,

f(z0) =
1

2πi

∫
∂D

f(z)

z − z0
dz.

The proof uses that
∫
∂D

dz/(z − z0) = 2πi and considers the difference quotient of f at z0.
The following generalization is also useful:

Theorem 2.4 (Cauchy Derivative Formula)

Under the same hypotheses as above,

f (n)(z0) =
n!

2πi

∫
∂D

f(z)

(z − z0)n+1
dz.

A consequence of the CIF is that all derivatives of analytic functions are also analytic. We
also have the following simple estimate:

Theorem 2.5 (Cauchy’s Inequality)

Suppose f is holomorphic on B(z0, R) and continuous on B(z0, R). Then∣∣f (n)(z0)
∣∣ ≤ n!MR

Rn
,

where MR = sup∂B(z0,R) |f(z)|.

Exercise 2.4 (Liouville’s Theorem): Any entire and bounded function is constant.

Example 2.3 (September 2024, Problem 4): Classify all entire functions f(z)
that satisfy |f(z)| ≤

√
1 + |z| for all z ∈ C.

15



Grayson R. Davis Day 2 January 8, 2026

Solution: Let z0 ∈ C be given and take any circle CR centered at z0. Let z ∈ CR. Then

|z| ≤ |z0|+R,

and
|f(z)| ≤

√
1 +R + |z0| ≤ 1 +

√
R +

√
|z0|.

Thus, by Cauchy’s inequality

|f ′(z0)| ≤
1

R

(
1 +

√
R +

√
|z0|
)
→ 0 as R → ∞.

Thus, f ≡ a for some a ∈ C. Moreover,

|a| ≤ inf
z∈C

√
1 + |z| = 1,

so any such f is a constant within B(0, 1) ⊆ C.

■

2.2.3 Morera’s Theorem and Maximum Modulus Principle

Here we present two important consequences of Cauchy’s theorem that may show up on
the written exam. The first is combines the antiderivative theorem with the fact that the
derivatives of holomorphic functions are holomorphic:

Theorem 2.6 (Morera)

Let D be a domain. Suppose f ∈ C(D) satisfies
∫
C
f = 0 for every simple closed

contour C in D. Then f is analytic in D.

Example 2.4: LetD be a domain and {fn}∞n=1 be a sequence of holomorphic functions
on D. Suppose fn → f uniformly on every compact subset of D. Show that f is
holomorphic on D.

Solution: Let B ⊆ D be any closed ball in D, and ∆ ⊆ B any triangle. Since each fn is
holomorphic in D, we have

∫
∆
fn = 0. Moreover, the convergence fn → f is uniform, so f is

continuous, and ∫
∆

f = lim
n→∞

∫
fn = 0.

By Morera’s theorem, f is analytic in B, hence in D.

■

Exercise 2.5 (January 2013 Problem 1(b)): For which values of z ∈ C does the
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series

f(z) =
∞∑
n=1

cos(nz)

en

converge. For which values of z is f(z) analytic? Hint: Use the previous example.

It is also often convenient to rewrite the CIF in Gauss mean value theorem form: let z0 ∈ C
and let Cρ be a small positively-oriented circle |z − z0| = ρ around z0. Then

f(z0) =
1

2π

∫ 2π

0

f(z0 + ρeiθ)dθ.

That is, for holomorphic f , it follows that f(z0) is the arithmetic mean of its values on Cρ.
This can be used to show that if |f(z)| ≤ |f(z0)| in a neighbourhood of z0, then f is constant
on this neighbourhood with value f(z0). The maximum modulus principle now follows:

Theorem 2.7 (Maximum Modulus Principle)

If f is a non-constant holomorphic function on a domain D, then |f(z)| does not attain
a maximum in D.

A simple corollary of this is that if D is bounded and f is continuous on D, then the extrema
of |f(z)| must lie on ∂D.

Example 2.5 (September 2022, Problem 4): Let f be holomorphic on some
open set containing the closed unit disk |z| ≤ 1. Assume that

|1− f(z)| ≤
∣∣ez−1

∣∣
on |z| = 1. Prove that 1/2 ≤ |f(0)| ≤ 3/2.

Solution: We have, for |z| = 1, ∣∣∣∣1− f(z)

ez

∣∣∣∣ ≤ 1

e
.

Since f is holomorphic in the disk, the maximum modulus principle applies to the above. In
particular, for z = 0 we have

|1− f(0)| ≤ 1

e
≤ 1

2
,

from which the desired bounds are derived.

■

Example 2.6 (September 2017, Problem 5): Let fk for k = 1, . . . , n be holo-
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morphic in a domain D. Can the function

f(z) =
n∑

k=1

|fk(z)|

have a strict local maximum in D? What about a strict local minimum?

Solution: We claim that f cannot have a strict local maximum in D. Assume instead that z0
is a maximizer of f . Let Cρ be a small circle around z0 with radius ρ such that f(z) ≤ f(z0)
for all z ∈ Cρ. Then

fk(z0) =
1

2π

∫ 2π

0

fk(z0 + ρeit)dt

for each k = 1, . . . , n. Thus,

f(z0) =
n∑

k=1

|fk(z0)| ≤
n∑

k=1

1

2π

∫ 2π

0

∣∣fk(z0 + ρeit)
∣∣ dt = 1

2π

∫ 2π

0

(
n∑

k=1

∣∣fk(z0 + ρeit)
∣∣) dt

=
1

2π

∫ 2π

0

f(z0 + ρeit) dt ≤ f(z) < f(z0),

a contradiction. Therefore, f cannot have a strict local minimum in D.

A strict local minimum is fine. For instance, let n = 1, f1(z) = z and f(z) = |z|.

■

Exercise 2.6 (January 2022, Problem 4): Let D be the unit disk centered at
the origin and D its closure. Assume f ∈ H(D) ∩ C(D) is non-constant such that
|f(z)| = 1 for all z ∈ ∂D (i.e. |z| = 1).
(a) Show that f has a zero in D.
(b) Show that f(D) = D.

2.2.4 Analytic Continuation

Let us make precise the notion of analytic continuation, which we have used to solve some
of the previous examples. The first result we require is the identity theorem.

Theorem 2.8 (Identity Theorem)

Let h be holomorphic on a domain D. Then the following are equivalent:

(i) h ≡ 0 in D;

(ii) The set D0 = {z ∈ C : h(z) = 0} has a limit point.

18
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Proof. Choose wk ∈ D0 such that wk → z0. We first show that f vanishes in a disk B ⊆ D
around z0. Consider the power series

f(z) =
∑
k≥0

ak(z − z0)
k.

If f were not identically zero in B, then we can choose the smallest integer N such that
aN ̸= 0. Then

f(z) = aN(z − z0)
N(1 + g(z − z0))

for some analytic function g that vanishes as z → z0. Plugging the wk into this expression
then provides a contradiction.

To conclude that f vanishes on all of D, let U denote the interior of the points where f
vanishes. We just showed that U is non-empty, and, by definition, U is open. But U is also
closed, since f is continuous. Now, the domain D is connected, so in fact U = D.

□

Now, if f and g are two analytic functions, the identity theorem can be readily applied to
h = f − g to show that f = g on a domain D. If f is defined on an open set U ⊆ C, and
V ⊆ C is another open set such that U ⊆ V . Then if F is an analytic function on V such
that F |U = f , we call F an analytic continuation of f .

2.3 More Integration Exercises

Exercise 2.7 (January 2025, Problem 1): Let C2 = {z ∈ C : |z| = 2}. Use CIF
to compute ∫

C2

1

z4 + 1
dz.

Exercise 2.8 (September 2023, Problem 1): State whether the following state-
ments are true or false (a one or two-line justification for each will suffice).
(a) There exists a function which is analytic on the unit disk and such that∫

|z|=1/2

f = −1.

(b) There exists an unbounded entire function f such that Re(f) ≡ −1.
(c) The power series

∑
n≥0 n

nzn converges at some complex number z ̸= 0.
(d) There exists a nonzero function f which is analytic on the unit disk, and such

that f (n)(0) = 0 for all n ≥ 0.
(e) Assume f is an entire function such that |f(0)| ≥ |f(z)| for all z ∈ C, and let

f(z) =
∑

n≥0 anz
n be its Taylor series. Then a5 = 0.
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Exercise 2.9 (January 2011, Problem 3): The function f is analytic in the whole
plane and have positive imaginary part. What can it be? What if all you know is that
the imaginary part of f tends to 0 at ∞?

2.4 Laurent Series

Any function f which is holomorphic at a point z0 admits a Taylor series at z0. This fact
is yet another consequence of the CIF. Thus, holomorphic and analytic are synonymous. A
Laurent series generalizes the Taylor series to functions that are analytic except for at a
point.

Theorem 2.9

Suppose f is analytic throughout some annulus R1 < |z − z0| < R2 centered at z0,
and let C be any simple closed contour around z0 contained in this domain. Then f
admits the series representation

f(z) =
∞∑
n=0

an(z − z0)
n +

∞∑
n=1

bn(z − z0)
−n

in R1 < |z − z0| < R2. The coefficients are given explicitly by

an =
1

2πi

∫
C

f(z)

(z − z0)n+1
dz, bn =

1

2πi

∫
C

f(z)

(z − z0)1−n
dz.

The proof, like for Taylor’s theorem, relies on some CIF shenanigans. Computing the Laurent
series in a given annulus is a basic exercise that often shows up on exams.

Example 2.7 (September 2025, Problem 3): Consider the complex function

f(z) =
1

z(z − 1)(z − 2)
.

Obtain the Laurent series expansion in the annulus 1 < |z| < 2.

Solution: First, let us split up f via partial fractions to obtain

f(z) =
1

2z
+

1

1− z
− 1

2(2− z)
.

The first term is already of the form 1/z, so we can leave it alone for now. Since |z| > 1, we
rewrite the second term as

1

1− z
= −1

z
· 1

1− (1/z)
= −1

z

∞∑
n=0

1

zn
= −

∞∑
n=1

1

zn
.
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The last term becomes
1

2(2− z)
=

1

4(1− (z/2)
=

∞∑
n=0

zn

2n+2
.

Overall, the Laurent series is

f(z) =

(
−1

2

)
1

z
−

∞∑
n=2

1

zn
−

∞∑
n=0

zn

2n+2
.

■

Exercise 2.10: Find the Laurent series expansion of f(z) from Example 2.7 in the
regions 0 < |z| < 1 and |z| > 2.

2.5 Residue Calculus

2.5.1 Cauchy’s Residue Theorem

If f is analytic on a domain D except at finitely many points z1, . . . , zn, we can define the
residue of f at the point zk by

Resz=zk f(z) := 2πib
(k)
1 ,

where b
(k)
1 =

∫
Ck

f is the first coefficient of the Laurent series expansion of f at the point
zk. Here, Ck is a positively oriented simple closed contour contained in D that contains zk.
Thus, ∫

Ck

f = 2πiResz=zk f(z).

Theorem 2.10 (Cauchy’s Residue Theorem)

Let D be a domain bounded by a (positively oriented) simple closed curve ∂D. Sup-
pose f is analytic in D except at finitely many points z1, . . . , zn ∈ D, and that f is
continuous on D. Then ∫

∂D

f = 2πi
n∑

k=1

Resz=zk f(z).

This is, in effect, exactly the same thing as the previously discussed “holes theorem” (see
Theorem 2.2).

Exercise 2.11 (September 2023, Problem 3): Consider the function

f(z) =
sin(z)

z3(z − 1)2
.

(a) Find the first two non-zero terms of the Laurent series of f in the annulus
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0 < |z| < 1/2, and compute
∫
C0

f where C0 is the circle of radius 1/4 centered
at z = 0, oriented CCW.

(b) Repeat part (a) for the annulus 0 < |z − 1| < 1/2 and C1 the circle of radius 1/4
centered at z = 1, oriented CCW.

2.5.2 Poles and zeros of analytic functions

If f is analytic except at a point z0, the part of the Laurent series of f with negative powers
of (z − z0),

b1
(z − z0)

+
b2

(z − z0)2
+ . . .+

bk
(z − z0)k

+ . . .

is called the principal part. If the principal part terminates at the power k = N , then the
point z0 is called a pole of order N of f . In the case N = 1, z0 is often called a simple pole.
If each bk = 0, then z0 is called a removable singularity, and if the bk never terminate, z0 is
an essential singularity. Essential singularities are particularly strange (we will state a few
theorems concerning them later). A particularly important example of a function with an
essential singularity is e1/z. An important piece of terminology is the term meromorphic,
which describes a function that is holomorphic on its domain except at finitely many isolated
singularities, all of which being poles.

A convenient characterization of poles that is often used when computing residues is the
following:

Theorem 2.11

Let f be analytic except at an isolated singular point z0. Then z0 is a pole of order N
if and only if

f(z) =
ϕ(z)

(z − z0)N

for some analytic function ϕ with ϕ(z0) ̸= 0. Moreover, if N = 1,

Resz=z0 f(z) = ϕ(z0),

and if N > 1,

Resz=z0 f(z) =
ϕ(N−1)(z0)

(N − 1)!
.

It is straightforward to define ϕ given the Laurent series of f by setting

ϕ(z) =

{
(z − z0)

Nf(z) z ̸= z0

bN z = z0
.
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Exercise 2.12 (January 2025, Problem 1 (again)): Let C2 = {z ∈ C : |z| = 2}.
Use residues to compute ∫

C2

1

z4 + 1
dz.

Let us also quickly discuss the zeros of analytic functions so that we can state another nice
formula for computing contour integrals. If f(z0) = 0 and N is the smallest integer such
that f (N)(z0) ̸= 0, then z0 is called a zero of order N of f .

Theorem 2.12

Let f is analytic at z0. Then z0 is a zero of order N of f if and only if there is an
analytic function g with g(z0) ̸= 0 such that f(z) = (z − z0)

Ng(z).

A nice corollary of this is that the zeros of analytic functions are isolated (Exercise: prove
this). From this, it is easy to see that if p, q are analytic functions such that p(z0) ̸= 0 and
q has a zero of order N at z0, then p/q has a pole of order N at z0. Now, for simple poles,
this provides a simple formula for finding residues:

Theorem 2.13

Let p, q be analytic at z0 such that p(z0) ̸= 0 and q has a zero of order 1 at z0. Then

Resz=z0

p(z)

q(z)
=

p(z0)

q′(z0)
.

Example 2.8 (January 2012, Problem 2): Compute∫
C

z sec(z)

(1− ez)2
dz,

where C is the circle of radius 2 centered at the origin.

Solution: We first rewrite the integrand as

f(z) =
z sec(z)

(1− ez)2
=

z

cos(z)(1− ez)2
,

from which we can identify z = 0,±π/2 as simple poles. We compute the residues at each
pole:

For π/2, we compute

Resz=π/2 f(z) =
π/2

(− sin(π/2)(1− eπ/2)2 − 2 cos(π/2)eπ/2(1− eπ/2))
= − π

2(1− eπ/2)2
.

Likewise,

Resz=−π/2 f(z) = − π

2(1− e−π/2)2
.
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For z = 0, we first observe that(
(1− ez)2

z

)′

=
−2zez(1− ez)− (1− ez)2

z2
.

Thus, after two applications of L’Hopital, we find that

Resz=0 f(z) = lim
z→0

z2

−2zez(1− ez)− (1− ez)2
= 1.

Overall, ∫
C

z sec(z)

(1− ez)2
dz = 2πi

(
1− π

2(1− eπ/2)2
− π

2(1− e−π/2)2

)
.

■
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Day 3: Applications of Residues & Conformal Mappings

3.1 Computing Real Integrals via Residues

Computing a real integral via complex-analytic methods is possibly the most likely question
to appear on the written exam. We will cover three examples, and a few more important
exercises are left below those.

3.1.1 Three important examples

Example 3.1 (September 2024, Problem 1): Compute the following integral
using the residue theorem: ∫ ∞

−∞

x

(x2 + 2x+ 2)2
dx.

Solution: We consider the complexified (is this a word people use?) version of the integrand

f(z) =
z

(z2 + 2z + 2)2
,

and observe that f has two poles, each of order 2, at

z0 = −1 + i, z1 = −1− i.

Let CR be the positively oriented semicircle of radius R in the closed upper half-plane, R ≫ 1.
Moreover, let ΓR be the interval [−R,R] on the real axis, and define C = ΓR ∪CR, oriented
positively. We compute the residue of f as z0 as follows:

Resz=z0 f(z) =

∫
C

z/(z + 1 + i)2

(z − (−1 + i))2
dz = 2πi

(
z

(z + 1 + i)2

)′∣∣∣
z=−1+i

= 2πi
(2i)2 − 2(−1 + i)(2i)

(2i)4

= −π

2
,

by CIF. The next step is to show that the part on the arc of the circle vanishes as we take
R to infinity. To this end, fix z ∈ C with |z| = R. Then

|f(z)| ≤ R

(R2 − 2R− 2)2
,

where we have applied the triangle inequality. Thus,

lim
R→∞

∣∣∣∣∫
CR

f(z) dz

∣∣∣∣ ≤ lim
R→∞

π
R2

(R2 − 2R− 2)2
= 0.

Therefore, ∫ ∞

−∞

x

(x2 + 2x+ 2)2
dx =

∫
C

z

(z2 + 2z + 2)2
dz = −π

2
.

■
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Example 3.2 (January 2007, Problem 1): Show that
∑

n≥1 1/n
2 = π2/6 by

integrating 1/(z2(e2πiz − 1) along the boundary of a suitable box.

Solution: First note that

f(z) =
1

z2(e2πiz − 1)

has a triple pole at z and simple poles at z = k for every integer k ̸= 0. It is a straightforward
computation to show that

Resz=k f(z) =
1

2πik2
.

We must choose a contour that avoids all the roots. To this end, consider the box

(I)

z = x− i

(
N +

1

2

)
,

(II)

z =

(
N +

1

2

)
+ iy,

(III)

z = x+ i

(
N +

1

2

)
,

(IV)

z = −
(
N +

1

2

)
+ iy,

where

x, y ∈
[
−
(
N +

1

2

)
, N +

1

2

]
and the box C is to be oriented positively.

On (I) and (III), observe that

lim
N→∞

∣∣∣∣∫
Γ

f(z) dz

∣∣∣∣ ≤ lim
N→∞

2

(
N +

1

2

)
1

(N + 1/2)2(e−2π(N+1/2) − 1)
→ 0,

by the triangle inequality. On the contours (II) and (IV), we find

e2πiz = e2πiNeπie−2πy = −e−2πy.

Then the contour integrals over (II) and (IV) again decay like 1/N . By Cauchy’s theorem

2
∞∑
n=1

1

n2
+ 2πiResz=0 f(z) = 0.
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To compute Resz=0 f(z), one can do series division to find

1

z2(e2πiz − 1)
=

1

2πiz3
· 1

1 + πiz + (2πi)2

6
z2 + . . .

=
1

(2πi)z3
− 1

2z2
+

iπ

6
· 1
z
+ . . . ,

from which we identify Resz=0 f(z) = (πi)/6. ■

Example 3.3 (September 2012, Problem 3): Show that

I :=

∫ ∞

0

1

1 + x3
dx =

2π

3
√
3

by integrating around the contour which consists of arc of the circle of radius R for
0 ≤ θ ≤ 2π/3, where it becomes the line segment rei2π/3 for 0 ≤ r ≤ R.

Solution: Let f(z) = 1/(1 + z3), which has poles at z = −1, eiπ/3, e−iπ/3. As suggested, we
split the contour into the arc or the circle of radius R, denoted CR, for 0 ≤ θ ≤ 2π/3, the
ray ΓR parametrized by re2πi/3 for 0 ≤ r ≤ R, and the interval IR = [0, R] on the real line.
Let C = CR ∪ (−ΓR) ∪ IR, oriented positively. Then∫

C

f(z) dz =

∫
CR

f(z) dz −
∫
ΓR

f(z) dz +

∫
IR

f(z) dz.

First, observe that the only pole of f interior to C is z = eiπ/3. Computing the residue, we
find that

2πiResz=eiπ/3 f(z) =
2πi

3(eiπ/3)2
=

2πi

3e2πi/3
.

We now evaluate
∫
ΓR

f using the parametrization re2πi/3 as follows:∫
ΓR

1

1 + z3
dz = e2πi/3

∫ R

0

1

1 + r3
dr → e2πi/3I

in the limit R → ∞. Lastly, observe that∣∣∣∣∫
CR

f(z) dz

∣∣∣∣ ≤ C
R

R3 − 1
→ 0

as R → ∞. Thus,

2πi

3e2πi/3
= 2πiResz=eiπ/3 f(z) =

∫
C

f(z) dz = (1− e2πi/3)I.

Simplifying, this becomes I = 2π/(3
√
3).

■

3.1.2 Exercises on real integrals
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Exercise 3.1 (September 2016, Problem 3): For any real number p > 1, calculate∫ ∞

0

1

xp + 1
dx.

Exercise 3.2 (September 2007, Problem 2): Calculate the integral

I =

∫ ∞

0

cos(x)

x2 + 1
dx.

Exercise 3.3 (January 2011, Problem 1): Calculate the integral

I =

∫ ∞

−∞

1

x4 + 3x2 + 4
dx.

Exercise 3.4 (January 2017, Problem 5(b)): Let n be an arbitrary positive
integer. Evaluate ∫ ∞

0

1

x2n + x−2n
dx.

Hint: Use a suitable shaped and positioned “pizza slice” contour.

3.2 Argument Principle & Rouché’s Theorem

One of the most frequent questions to appear on the written exam is to determine the number
of roots of a function inside some disk. The solution to this almost always involves applying
Rouché’s theorem, which is a consequence of the argument principle.

Theorem 3.1 (Argument Principle)

Suppose f is meromorphic on a domain D and let C be a circle such that C and its
interior are inside D, and such that f has no poles or zeros on C. Then

1

2πi

∫
C

f ′(z)

f(z)
dz = Z − P,

where Z, P are the number of zeros and poles of f , respectively, counting multiplicity.

The idea behind this result is that the integrand is the logarithmic derivative, so the integral
of this quantity measures the change in the argument of f as z traverses the curve C. If
f is meromorphic, then f ′/f will have simple poles at the zeros and poles of f , and so the
residue theorem may be applied.
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Theorem 3.2 (Rouché)

Let f, g be holomorphic in the domain D, which contains a circle C and the interior
of C. Suppose that

|f(z)| > |g(z)| ∀z ∈ C.

Then f and f + g have the same number of zeros inside C.

The proof follows from the argument principle applied to the family of functions ft = f + tg
for t ∈ [0, 1]. The idea is to show that the function

Zt =
1

2πi

∫
C

f ′
t(z)

ft(z)
dz

is constant in t. The details are left as an exercise.

Example 3.4 (September 2024, Problem 3): Determine the number of zeros of
z8 − 2024z4 + z + 1 on the unit disk in C.

Solution: We apply Rouché’s theorem to the functions f(z) = −2024z4 and g(z) = z8+z+1
to find that f + g has four zeros in the unit disk (counting multiplicities). ■

Example 3.5 (January 2005, Problem 2): Consider the polynomial of degree n,

Pn(z) = z +
z2

2!
+ . . .+

zn

n!
.

Arrange its n roots (zn,1, . . . , zn,n) in increasing order of magnitude

0 = |zn,1| ≤ |zn,2| ≤ . . . ≤ |zn,n|.

What happens to zn,2 as n → ∞? Why?

Solution: Note first that Pn(z) is the partial sum of ez − 1, which has roots at integer
multiplies of 2πi. Thus, we would expect |zn,2| → 2π as n → ∞.

To see this, let us first apply Rouché to upper bound |zn,2|. Let m = inf |z|=3π |f(z)|, and
note that m > 0, as f is non-zero on the circle |z| = 3π. Now write

Pn(z) = f(z) + (Pn(z)− f(z)).

By convergence of the partial sums on C, for sufficiently large n, it follows that

|Pn(z)− f(z)| ≤ m

2

for all z interior and on the circle |z| = 3π. Thus, Rouché gives that Pn(z) and f(z) share
the same number of zeros in |z| = 3π. However, we know the zeros of f exactly! The only
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zeros of f inside this circle are z = 0,±2πi. Thus, for sufficiently large n it follows that
Pn(z) has three zeros in |z| < 3π. One of these zeros is z = 0.

Now consider the region |z − 2πi| ≤ δ for δ > 0 small and arbitrary. Letting mδ denote the
infimum of f over this circle, we can apply the same argument above to show that, for δ
sufficiently small, Pn has one zero in this disk. As δ shrinks, this zero approaches 2πi. The
same argument holds for |z + 2πi| ≤ δ, so that indeed |zn,2| → 2π as n → ∞.

■

Exercise 3.5 (January 2023, Problem 2): Let p(z) = z3 − 8z2 + 7z + 2. How
many roots of p (counting multiplicities) lie in the disk |z| < 3?

Exercise 3.6 (September 2014, Problem 4): How many roots does the equation
z4 − 6z + 3 = 0 have in the annulus 1 < |z| < 2?

3.3 More on Singularities

3.3.1 Essential Singularities

There are some facts about essential singularities you should know for the written exam
(sometimes these make a proof more-or-less immediate!) The first result is the Casorati-
Weierstrass theorem. The key ingredient in the proof is a result from Riemann:

Theorem 3.3 (Riemann’s theorem on removable singularities)

If f is holomorphic and bounded on a punctured disk D∗ around a point z0, then z0
is a removable singularity of f .

A simple consequence of this is that, given an isolated singularity z0 of f , then z0 is a pole
of f if and only if |f(z)| → ∞ as z → z0.

Theorem 3.4 (Casorati-Weierstrass)

Let f be holomorphic in a punctured disk D∗ centered around z0 and suppose f has
an essential singularity at z0. Then f(D∗) is dense in C.

Proof. Assume instead f(D∗) is not dense in C. Then there exist w ∈ C and δ > 0 such
that

|f(z)− w| > δ

for all z ∈ D∗. Now, define the auxiliary function

g(z) =
1

f(z)− w
.
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Then g is holomorphic and bounded in D∗, hence z0 is a removable singularity of g. If
g(z0) ̸= 0, then f(z) − w would be holomorphic at z0, which is a contradiction. Thus,
g(z0) = 0, so that f(z)− w has a pole at z0, a contradiction.

□

The Great Picard Theorem is a significant strengthening of the above result:

Theorem 3.5 (Great Picard)

Let f be holomorphic on a punctured disk D∗ centered at z0 and suppose f has an
essential singularity at z0. Then f(D∗) is either all of C or C\{w} for some w ∈ C,
where every value of f(D∗) is taken on infinitely often.

The weaker version of this theorem is an important result concerning entire functions:

Theorem 3.6 (Little Picard)

Suppose f is non-constant and entire. Then either f attains every value of C or C\{w}
for some w ∈ C.

Before seeing an example, let’s quickly review how singularities at infinity work.

3.3.2 Singularities at Infinity

We can also define the notion of singularities at infinity of a function f by looking at the
type of singularity of g(z) = f(1/z) at z = 0. A removable singularity at infinity would then
be characterized by a function f such that limz→∞ f(z) = L ∈ C. In particular, the Laurent
series of f at z = 0 has no positive powers of z. Likewise, a pole of f at infinity occurs when
limz→∞ f(z) = ∞, and the order of the pole is given by the largest positive power in the
Laurent series expansion of f . An essential singularity at infinity then means that the limit
limz→∞ f(z) does not exist, corresponding to infinitely many terms with positive power in
the Laurent series of f .

We can now classify entire functions by their behaviour at infinity. By Liouville’s theorem,
an entire function with a removable singularity at infinity is constant. If an entire function
has a pole of order N at infinity, then that function is a polynomial of degree N . Otherwise,
entire functions that have an essential singularity at infinity are called transcendental.

Example 3.6 (September 2025, Problem 1): Let f be non-constant and entire.
Prove that for every complex number c there is an infinite sequence {zn} such that
limn→∞ f(zn) = c.

Solution 1 (Little Picard): This is essentially an immediate consequence of Little Picard,
since the closure of C minus a point is just C.

Solution 2 (Casorati-Weierstrass): Since f is non-constant and entire, either f is a polyno-
mial or f is transcendental. If the former is true, then f is surjective (this is a consequence
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of the Fundamental Theorem of Algebra), and we are done. Otherwise, f is transcenden-
tal, so we can apply Casorati-Weierstrass to conclude, where the theorem is applied to a
neighbourhood of infinity.

There is a third solution via Liouville but we will see this solution later.

■

Example 3.7 (January 2007, Problem 4): What is the most general entire
function that takes each value of C once and only once?

Solution: Let f be given as in the question statement. Since f is entire, the principal part
of its Laurent series is trivial. It suffices to study the type of singularity of f at infinity. By
Big Picard, f cannot have an essential singularity at infinity, or else it takes on each value
of C (except maybe one) infinitely often. Thus, f(1/z) cannot have infinitely terms with
negative power in its Laurent series. Therefore, f is a polynomial. Since f attains 0 only
once, it only has one root. Thus, we can write f(z) = a(z− z0)

m for some a ∈ C and m ∈ N.
If m > 1, then the equation f(z) = w has more than one solution for each w ∈ C. Therefore,
f is any linear polynomial.

■

Exercise 3.7 (September 2012, Problem 5): Let f be an entire function which
does not take any value more than 3 times. What can it be?

3.4 Definitions of Conformal Mappings

Let us first introduce some terminology. A mapping f : U → V , U, V ⊆ C open, is called a
conformal map (or a biholomorphism) if f is bijective and holomorphic. If a conformal map
U → V exists, we call U and V conformally equivalent.

The first fundamental result concerning conformal maps is the following:

Theorem 3.7

Let f be a holomorphic and injective map from an open set U to the open set V . Then
f ′(z) ̸= 0 for all z ∈ U .

In particular, the inverse of f , defined on f(U) ⊆ V , is holomorphic, via the formula

(f−1)′(w) = 1/f ′(f−1(w)).

Therefore, any conformal map has a holomorphic inverse.

Sometimes, the definition of a holomorphic map f : U → V being conformal is simply the
condition that f ′(z) ̸= 0 for all z ∈ U . Any such map will preserve angles, and moreover is
locally bijective. However, we will follow the convention in [2] for these notes and assume
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that bijectiveness is cooked into the definition of conformal. If you wish, you can solve the
following exercise:

Exercise 3.8 (Stein & Shakarchi [2], Chapter 8, Exercise 1): A holomorphic
map f : U → V is a local bijection on U if for every z ∈ U there is a disk D ⊆ U
centered at z so that f |D : D → f(D) is a bijection.
Prove that f : U → V is a local bijection if and only if f ′(z) ̸= 0 for all z ∈ U . Hint:
Use Rouché’s theorem.

Example 3.8 (January 2016, Problem 5): Consider the map w = f(z) defined
by

w =
1

2

(
3z +

1

z

)
.

What is the image of the unit circle under this map? Where is this map conformal?

Solution: Given z = eiθ, we compute

f(z) =
1

2

(
3eiθ + e−iθ

)
= 2 cos(θ) + i sin(θ),

so the image of the unit circle is an ellipse intercepting the real axis at z = ±2 and imaginary
axis at z = ±i.

To determine where f(z) is conformal, let us first find the points where f ′(z) ̸= 0. The
function has a pole at z = 0, so f cannot be conformal there. We compute

f ′(z) =
1

2

(
3− 1

z2

)
= 0,

so that z = ±1/
√
3 and z = 0 are the points where f is not locally conformal. Now, our

definition of conformality insists that f is a bijection. If we just define f on the domain
C\{0,±1/

√
3}, then f is actually a 2-to-1 mapping, since z and 1/(3z) map to the same

point. Thus, we must restrict f to subdomains of one of the following two regions to ensure
it is conformal: {

z ∈ C : |z| > 1√
3

}
,

{
z ∈ C : 0 < |z| < 1√

3

}
.

■

The mapping considered in the previous example comes up quite frequently, so it is worth a
brief comment to fully understand it. Namely, the mapping

z 7−→ z +
1

z

is called the Joukowski transformation.
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Example 3.9: Show that the Joukowski transformation maps the upper half-disk to
the lower half-plane.

Solution: This is easiest to see in polar coordinates, as done in the above example. Indeed,

reiθ + r−1e−iθ =

(
r +

1

r

)
cos(θ) + i

(
r − 1

r

)
sin(θ).

Now, in the upper half-disk, we have θ ∈ (0, π), so that sin(θ) > 0. However, for r < 1, the
coefficient r−r−1 is negative. Thus, the upper half-disk is mapped into the lower half-plane.

As an exercise, show that the transformation is bijective and conclude it is conformal from
the upper half-disk to the lower half-plane.

■

3.5 Linear Fractional Transformations

One important class of conformal mappings are the linear fractional transformations (also
known as Möbius transformations), defined by

w = F (z) =
az + b

cz + d
,

where ad− bc ̸= 0. The inverse of F is given by

z = G(w) =
dw − b

−cw + a
,

and hence is also a linear fractional transformation.

Example 3.10 (Mapping the upper half-plane H to the unit disk D): Define

F (z) =
i− z

i+ z
.

Show that F is a conformal map from H to D, with inverse

G(w) = i
1− w

1 + w
.

Solution: Any point in H is closer to i than −i, so indeed F is a well-defined mapping from
H to D. Now, if w = u+ iv ∈ D, then

Im(G(w)) = Re

(
1− u− iv

1 + u+ iv

)
=

1− u2 − v2

(1 + u)2 + v2
> 0,

since |w| < 1. To conclude, it is straightforward to check that F (G(w)) = w for all w ∈ D.

■
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Example 3.11 (January 2021, Problem 2): Let f(z) = exp
(
1+z
1−z

)
for z ̸= 1.

(a) Find all zeros of f .
(b) Where is f holomorphic?
(c) Is f bounded on the unit circle, from which z = 1 is removed?
(d) If f bounded on the open unit disk?

Solution: Note that (1 + z)/(1− z) is a linear fractional transformation, mapping D to the
right open half-plane Re(z) > 0. For (a), since ez has no roots, there are no zeros of f .
Moreover, since f is the composition of a conformal mapping and an entire function, f is
holomorphic everywhere except z = 1.

Under the transformation (1 + z)/(1 − z), the unit circle without z = 1 is mapped to the
imaginary axis, which in turn maps to the unit circle under the exponential map. Therefore,
f is bounded on the unit circle without z = 1.

However, f is not bounded on the open unit disk. Indeed, the transformation (1+z)/(1− z)
maps the open unit disk to the right half-plane Re(z) > 0, which is then mapped to the
exterior of D.

■

Exercise 3.9 (September 2008, Problem 4):
(a) Prove that, if z and w are complex numbers and |w| = 1, then∣∣∣∣ z − w

1− zw

∣∣∣∣ = 1.

(b) Prove that, if |z| < 1, |w| < 1, then∣∣∣∣ z − w

1− zw

∣∣∣∣ < 1.

Exercise 3.10: Let SL(2,R) denote the space of 2 × 2 matrices with determinant
equal to 1. To each

A =

(
a b
c d

)
∈ SL(2,R)

is a corresponding linear fractional transformation TA(z) = (az + b)/(cz + d). Prove
that the number and location of the fixed points of TA (i.e. TA(z) = z) in the extended
plane C ∪ {∞} are determined by the trace of A, τ = Tr(A) as follows:
(a) |τ | < 2 if and only if TA has two fixed points, which are complex conjugates.
(b) |τ | = 2 if and only if TA has one fixed point, which lies on R ∪ {∞}.
(c) |τ | > 2 if and only if TA has two distinct fixed points, which lie on R ∪ {∞}.

Hint: Look at the discriminant of a certain polynomial.
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Day 4: Riemann Mapping Theorem & Practice Exams

4.1 The Schwarz Lemma

4.1.1 The lemma

The Schwarz lemma is one of the most important results concerning conformal mappings,
and is a key ingredient in proving the Riemann mapping theorem.

Theorem 4.1 (Schwarz Lemma)

Let f : D → D be holomorphic and f(0) = 0. Then

(a) |f(z)| ≤ |z| for all z ∈ D;

(b) If |f(z0)| = |z0| for some z0 ∈ D, then f(z) = eiθz for some θ ∈ R (i.e. f is a
rotation);

(c) |f ′(0)| ≤ 1, and f is a rotation if equality holds.

Example 4.1 (January 2025, Problem 3(b)): Let f : H → H be holomorphic
such that f(i) = i. Prove that |f ′(i)| ≤ 1. Can you classify the maps for which
equality holds?

Solution: Define g : D → D by
g(z) = (F ◦ f ◦G)(z),

where F and G are as in Example 3.10. Then g is holomorphic, and

g(0) = F (f(G(0))) = F (f(i)) = F (i) = 0.

By the Schwarz lemma, we have |g′(0)| ≤ 1. However, we compute

g′(z) = F ′(f(G(z))) · f ′(G(z)) ·G′(z),

so that

g′(0) = F ′(i)f ′(i)(F−1)′(0) = F ′(i)f ′(i)
1

F ′(F−1(0))
= f ′(i),

so that |f ′(i)| ≤ 1. If equality were to hold, then the Schwarz lemma says that g(z) = eiθz
for some θ ∈ R. In particular, f(z) = G(eiθF (z)).

■

4.1.2 Automorphisms of the disk

It is also good to know the classification of automorphisms of the disk and upper half-plane.
We define an automorphism to be a conformal map from an open set to itself.
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Example 4.2: Show that the mappings

z 7−→ α− z

1− αz
,

where |α| < 1, are automorphisms of the unit disk D.

Solution: First note that any such map that is holomorphic in D, since |α| < 1. On the
boundary |z| = 1, we compute

α− eiθ

1− αeiθ
= e−iθw

w
,

where w = α− eiθ. Thus, any such map has unit norm on ∂D, so by the maximum modulus
principle we conclude that

z 7−→ α− z

1− αz
,

is a mapping D → D. A standard computation shows that this mapping is its own inverse.

■

We also note that these mappings, since they are idempotent, interchange z = 0 and z = α.

Theorem 4.2 (Automorphisms of the Disk)

All automorphisms of the disk D are of the form

f(z) = eiθ
α− z

1− αz

for some θ ∈ R, α ∈ D.

The proof follows from studying the function

g(z) =

(
f ◦ α− (·)

1− α(·)

)
(z),

where α is chosen such that f(α) = 0. This choice ensures that g(0) = 0, so that the Schwarz
lemma may be applied to g−1. The details are left as an exercise. An immediate corollary
of this theorem is that the automorphisms of D that fix the origin are just the rotations.

Example 4.3 (January 2015, Problem 1): Find all conformal mappings of the
domain for which z satisfies both |arg(z)| < π and |z| < 1 onto the unit disk such that
the image of z = 1/2 is zero.

Solution: Let D denote the domain in the question. Then D describes the unit disk without
the negative real axis. In particular, f(z) =

√
z, taken with the principal branch, is conformal

on D and maps it to the right half-disk. Multiplying by i, we get a conformal map from D
to the upper half-disk.
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Now we want to unfold the right half-disk to the upper half-plane, from which we can use
the usual transformation

F (z) =
i− z

i+ z

to map to the disk. We apply the Joukowski transformation

J(z) = −
(
z +

1

z

)
to map the upper half-disk to the upper half-plane, so that F ◦ J ◦ (if) is a conformal map
from D to D. Checking the image of z = 1/2 under J ◦ (if), we see that

(J ◦ (if))
(
1

2

)
=

i√
2
,

so we need to slightly modify F to ensure that z = 1/2 maps to the origin. The straightfor-
ward choice is

F̃ (z) =
i−

√
2z

i+
√
2z

,

so one such conformal mapping of D to D is g(z) = F̃ ◦ J ◦ (if).

To find all such conformal maps D → D, let us consider any arbitrary h satisfying the
hypotheses of the question. Then H : D → D defined by H(z) = h ◦ g−1 is conformal and
maps the origin to itself. Hence, H is a rotation by the classification of automorphisms of
the disk, so in fact

h(z) = eiθg(z)

for some θ ∈ R.

■

4.2 Riemann Mapping Theorem

The Riemann mapping theorem is probably overkill for most of the questions that appear
on the exam but is nonetheless good to know.

Theorem 4.3 (Riemann mapping theorem)

Let D be a domain which is a proper subset of C. For any z0 ∈ D, there exists a
unique conformal map F : D → D such that

F (z0) = 0, F ′(z0) > 0.

The theorem can be useful if all you need is some mapping into the disk but do not necessarily
care about the exact form of the mapping. The next example illustrates this.
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Example 4.4 (January 2011, Problem 3 (again)): The function f is analytic
in the whole plane and have positive imaginary part. What can it be? What if all you
know is that the imaginary part of f tends to 0 at ∞?

Solution: We are given that f is a mapping C → H. By the Riemann mapping theorem,
there is a conformal mapping g : H → D. Then g ◦ f is entire and bounded, hence constant
by Liouville’s theorem, so that f = g−1 ◦ g ◦ f is also constant.

If the imaginary part of f tends to 0 at infinity, then f is mapped into some horizontal strip
D = {z ∈ C : |Im(z)| < M} for some M > 0. Choosing a conformal mapping h : D → D,
the same argument above shows that f is also constant in this case.

■

Example 4.5: Does there exist a holomorphic surjection f : D → C.

Solution: By the Riemann mapping theorem, there is a conformal map f : D → D where D
is the upper half-plane shifted down by one unit. Composing f with g(z) = z2 then gives
the desired surjection.

■

4.3 More Examples/Exercises for Conformal Maps

Example 4.6 (January 1990, Problem 4): Find a conformal map w = f(z) from
the wedge 0 < arg(z) < απ, where 0 < α < 1, onto the unit disk.

Solution: Any z in the wedge Dα can be written as z = reiθ where 0 < θ < απ. Hence, the
mapping g(z) = z1/α maps the wedge to the upper half-plane. Now we have the mapping

F (z) =
i− z

i+ z

from the half-plane to the unit disk, so that F ◦ g maps the wedge Dα to the unit disk D.

■

Example 4.7 (September 2024, Problem 2): Construct a conformal mapping
from the domain

D = H\{z = eiθ : θ ∈ (0, π/2]}

to H.

Solution: We will write the map as a composition of conformal maps. First, we map D
under the linear fractional transformation

f1(z) =
z − 1

z + 1
.
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Under this transformation, the slit eiθ becomes

eiθ − 1

eiθ + 1
=

eiθ − 1

eiθ + 1
· e

−iθ + 1

e−iθ + 1
= i

sin(θ)

1 + cos(θ)
.

Thus, f1 maps D to the domain D1 = C\(0, i], the complex plane without the segment from
0 to i on the imaginary axis.

Next, consider the image of D1 under the map f2(z) = z2, which doubles the argument of
every z ∈ D1. Since the real-axis is excluded, f2(D1) is the domain D2 = C\[−1,∞). Now
let f3(z) = z+1 to map D2 to D3 = C\[0,∞), which is then mapped to H by the square-root
map f4(z) =

√
z. Thus, the final map is

f(z) = (f4 ◦ f3 ◦ f2 ◦ f1)(z) =

√(
z − 1

z + 1

)2

+ 1.

■

Exercise 4.1 (September 2021, Problem 2): Construct a conformal map that
sends the half-strip

S = {a+ ib : 0 < a < π, b > 0}

to the upper half-plane. You may express your map as a composition of functions.

Exercise 4.2 (January 2022, Problem 5): Construct a one-to-one conformal map
from H to the region of C below the parabola y = 9x2, i.e. {z = x + iy : y < 9x2}.
Express your answer as an analytic function of z.

4.4 Practice Exams

To conclude, let’s go through the solutions to some recent exams question-by-question.

4.4.1 September 2025 Solutions

Note that this exam specified to choose 5 of the following 6 questions to solve. I’ll provide
my solutions to all 6 problems but don’t worry if the exam seems a bit long with all 6 of
them.

1. Let f(z) be an entire function which is not a constant function. Prove that for any
complex number c there is an infinite sequence {zn} such that

lim
n→∞

f(zn) = c.

Solution: We previously saw solutions to this using Little Picard and another using Casorati-
Weierstrass. We present yet another solution that only requires Liouville’s theorem. Suppose
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instead that the range of f is not dense in C. Then we may choose a ball B(w, ϵ) such that
f never attains a value in this ball. Now define the auxiliary function

g(z) =
1

f(z)− w
.

Since f(z) ̸= w for all z ∈ C, the function g is entire. Moreover, |f(z)− w| ≥ ϵ for all z ∈ C,
so that g is bounded. Hence, we may apply Liouville to conclude that g is constant, which
then implies that f is constant, a contradiction.

■

2. Let f(z) be an entire function such that f(x + 2π) = f(x) for all real x. Is it then true
that

f(z + 2π) = f(z)

for all complex z? If yes, prove it. If no, give a counterexample.

Solution: Define the function g(z) = f(z + 2π)− f(z). Then g vanishes on the real line, so
by the identity theorem, g vanishes on all of z. Thus, the statement is true.

■

3. Consider the complex function

f(z) =
1

z(z + 1)(z + 2)
.

Obtain the Laurent series expansion of the function in the region |z| > 2. Note: the exam
does the annulus 1 < |z| < 2, but we have already used this as an example.

Solution: By partial fractions, we have that

f(z) =
1

2z
+

1

1− z
− 1

2(2− z)
.

In order for the series to converge, we must rewrite this as

f(z) =
1

2z
+

(
−1

z

)(
1

1− 1/z

)
+

(
1

4z

)(
1

1− 1/(2z)

)
=

1

2z
−

∞∑
n=1

1

zn
+

∞∑
n=1

1

2n+1

1

zn

= − 1

4z
+

∞∑
n=2

(
1

2n+1
− 1

)
1

zn
.

■

4. Use the method of residues to compute the real integral

I =

∫ ∞

−∞

cos(x)

(x2 + a2)2
dx,
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where a > 0.

Solution: Let CR be the arc of the circle of radius R with argument from 0 to π and
let ΓR = [−R,R]. Define C = CR ∪ ΓR, taken to be positively oriented. Let

f(z) =
eiz

(z2 + a2)2
=

eiz

(z − (ia))2(z + (ia))2
,

and observe that f has double poles at z = ±ia. Computing the residue at z = ia, we find
that

2πiResz=ia f(z) = 2πi
iei(ia)(2ia)2 − 2ei(ia)(2ia)

(2ia)4
= 2πi

ie−a(2ia)− 2e−a

(2ia)3
= π

(
a+ 1

2a3

)
e−a

It remains to show that the integral of f over CR vanishes as R → ∞. Indeed,∣∣∣∣∫
CR

eiz

(z2 + a2)2
dz

∣∣∣∣ ≤ ∫
CR

∣∣∣∣ eiz

(z2 + a2)2

∣∣∣∣ dz
≤
∫
CR

1

(R2 − a2)2
dz

≤ πR

(R2 − a2)2
,

which vanishes in the limit R → ∞. Here, we have used the reverse triangle inequality and
that e−y ≤ 1 for y ≥ 0. Thus, we find that

I = π

(
a+ 1

2a3

)
e−a.

■

5. Let f(t) be a continuous and bounded function for t ≥ 0 and define

g(z) =

∫ ∞

0

f(t)e−zt dt, Re(z) > 0,

known as the Laplace transform of f(t). Show that g(z) is holomorphic in the domain
Re(z) > 0.

Solution: Consider the truncated integrals

gn(z) =

∫ n

0

f(t)e−zt dt.

Then, since the integration domain is finite and the integrand is continuous in t, one can
differentiate under the integrand sign to conclude that gn is entire. It suffices now, due to a
consequence of Morera’s theorem previously discussed (Example 2.4), to show that gn → g
on compact subsets of Re(z) > 0. Let D be any compact subset of Re(z) > 0 and let

K = min
z∈D

Re(z) > 0.
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Moreover, since f is bounded, then there is M > 0 such that |f(t)| ≤ M for all t ≥ 0. Now,

|g(z)− gn(z)| ≤
∫ ∞

n

|f(t)|
∣∣e−zt

∣∣ dt ≤ ∫ ∞

n

Me−tRe(z) dt ≤
∫ ∞

n

Me−Kt dt =
M

K
e−Kn,

which tends to 0 in the limit n → ∞. Thus, gn → g on any compact subset of Re(z) > 0, so
that g is holomorphic on that domain.

■

6. Use the argument principle to determine the number of zeros of the function

f(z) = z4 + 6z + 3

inside the circle |z| = 2.

Solution: Note that Rouché’s theorem is a consequence of the argument principle, so we will
just apply Rouché’s theorem to solve this question. If you have time on the exam, you can
re-derive Rouché from the argument principle.

On |z| = 2, the largest term in the polynomial f is

24 = 16 > 15 = 6(2) + 3.

Therefore, Rouché’s theorem says that there are four zeros of f in the circle |z| = 2 (counting
multiplicity).

■

4.4.2 January 2022 Solutions

1. Let

f(z) =
3

z2 − z − 2
.

Find the Laurent series for f in each annulus centered on the origin which is relevant for
this function. In which annulus or annuli does f have primitives (a.k.a. antiderivatives)?

Solution: We first write

f(z) =
3

(z − 2)(z + 1)
=

1

z − 2
− 1

z + 1
.

Since f has poles at z = −1 and z = 2, the three regions we can study are |z| < 1, 1 < |z| < 2,
and |z >> 2|. Let’s just find the Laurent series in the annulus 1 < |z| < 2. We write

f(z) =
1

z − 2
− 1

z + 1
= −1

2
· 1

1− (z/2)
− 1

z
· 1

1− (−1/z)

= −
∞∑
k=0

zk

2k+1
−

∞∑
k=1

(−1)k−1z−k.
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By the antiderivative theorem, f has a primitive in a region if
∫
C
f = 0 for any simple closed

contour C in the region. However, Cauchy’s theorem says that
∫
C
f is proportional to the

sum of the residues of f at the singular points. For the annulus we consider above, the
residue is −1, so f does not admit an antiderivative in this region.

■

2.

(a) Let γ be the ellipse x2/2+y2 = 1, traversed in the counterclockwise direction. Compute∫
γ

ez − e−z

z4
dz.

(b) Let a > 0 be a strictly positive real number. Compute

Ia =

∫ ∞

0

cos(ln(x))

(x+ a)2
dx.

Solution:

(a) The integrand has a pole of order 3 at z = 0. By Cauchy’s theorem,∫
γ

ez − e−z

z4
dz = 2πiResz=0 f(z) =

2πi

3
,

where the residue is readily found by expanding the integrand as a Laurent series.

(b) This one is pretty annoying. Let’s use a “key hole” contour, defined as follows. Let CR

and Cϵ be circles of radius R and ϵ centered at the origin, respectively. Let L+
ϵ and L−

ϵ be
lines above and below the real axis, respectively, of distance ϵ away from the real axis, each
running from z = 0 to z = R. Now let C = CR ∪ Cϵ ∪ L+

ϵ ∪ L−
ϵ be positively oriented. We

will evaluate the integral of the function

f(z) =
zi

(z + a)2
=

ei log(z)

(z + a)2
,

where the branch cut is the positive real axis.

Let’s first show that the circle integrals vanish in the limits R → ∞ and ϵ → 0. First, note
that ∣∣zi∣∣ = e−θ,

so that |zi| ≤ 1. Thus, ∣∣∣∣∫
CR

f

∣∣∣∣ ≤ C
R

(R− a)2
→ 0

as R → ∞. Similarly, ∣∣∣∣∫
Cϵ

f

∣∣∣∣ ≤ C
ϵ

(a− ϵ)2
→ 0
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as ϵ → 0.

Now let’s compute the integrals along L±
ϵ in the limits ϵ → 0 and R → ∞. We parametrize

L+
ϵ as z = x+ iϵ where x ∈ [0,

√
R2 − ϵ2]. Then∫

L+
ϵ

f(z) dz =

∫ √
R2−ϵ2

0

(x+ iϵ)i

(x+ iϵ+ a)2
dx,

which by the dominated convergence theorem becomes∫ R

0

xi

(x+ a)2
dx.

Likewise, ∫
L−
ϵ

f(z) dz = −e−2π

∫ R

0

xi

(x+ a)2
dx.

Finally, we compute the residue at x = −a. A standard computation gives us

Resz=−a f(z) = −ie−π

a
ei log(a).

Letting

J =

∫ ∞

0

xi

(x+ a)2
,

the residue theorem gives us that

(1− e−2π)J = 2πiResz=−a f(z) = −(2πi)
ie−π

a
ei log(a).

After rearranging, we conclude that

Ia = Re(J) =
2πe−π cos(log(a))

a(1− e−2π)
.

■

3.

(a) Let f be an entire function with power series expansion f(z) =
∑∞

n=0 cnz
n. Assume

that f is purely real on the real axis. What can you say about the coefficients cn?

(b) Determine the general form of harmonic functions on R2 which vanish on the real axis.

(c) Derive, using the previous question, the general form of the real harmonic polynomials
P (x, y) with P (x, 0) = x3 − 2x+ 1.

Solution:

(a) We claim that all the coefficients cn are real. Indeed, define

g(z) = f(z)− f(z).
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Then g vanishes on the real axis, so by the identity theorem g is identically zero. Therefore,
cn = cn for all non-negative integers n, so that each cn is real.

(b) Any harmonic function v on R2 is the imaginary part of an entire function. To this end,
write f(z) = u+ iv where u is the harmonic conjugate of v. Since f is entire, we can expand
f as a power series f(z) =

∑∞
n=0 cnz

n. Under the assumptions of the question, v vanishes on
the real axis, so that f is purely real on the real axis. Therefore, each cn is real (by part (a)).
Thus, v is of the form

v(x, y) = Im(f(z)) =
∞∑
n=0

cnIm(zn).

(c) Since P (x, y) is a harmonic polynomial, it is the imaginary part of a complex polynomial.
Thus,

P (x, y) = Im

(
N∑

n=0

cnz
n

)
.

The data P (x, 0) = x3 − 2x+ 1 then gives the relation

N∑
n=0

Im(cn)x
n = x3 − 2x+ 1,

from which we conclude Im(c0) = 1, Im(c1) = −2, and Im(c3) = 1, and the remaining cn are
all real. In particular,

P (x, y)− Im(c0 + c1z + c3z
3)

is a real harmonic polynomial that vanishes on the real axis. Therfore, by part (b),

P (x, y)− Im(c0 + c1z + c3z
3) = Im

(
N∑

n=0

dnz
n

)

for some real coefficients dn. In particular,

P (x, y) = Im

(
N∑

n=0

bnz
n

)

where all bn are real, except for b0, b1, b3, which satisfy

Im(b0) = 1, Im(b1) = −2, Im(b3) = 1.

■

4. Let D be the unit disk centered at z = 0 of unit radius, and let D be the closure of
D. Assume f : D → C is continuous on D and analytic on D. Suppose further that f is
non-constant and such that |f(z)| = 1 for all z ∈ C such that |z| = 1.

(a) Show that f has a zero in D.
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(b) Show that f(D) = D.

Solution:

(a) Suppose instead f is non-zero inD. Then the function 1/f is analytic inD with |1/f | > 1,
since the maximum modulus principle says that |f | < 1 in D. However, |1/f | = 1 on the
unit circle, a contradiction.

(b)

Solution 1 (MMP): The maximum modulus principle immediately gives that f(D) ⊆ D.
Now suppose w ∈ D\f(D) and consider the auxiliary function

g(z) =
1

f(z)− w
.

Then g(z) is holomorphic in D, and the maximum modulus principle says that

1

|f(z)− w|
≤ sup

|z|=1

1

|f(z)− w|
≤ sup

|z|=1

1

||f(z)| − |w||
=

1

1− |w|
.

Thus, 1 − |w| ≤ |f(z)− w|, so the disk of radius 1 − |w| centered at w does not intersect
f(D). In particular, D\f(D) is open. However, the open mapping theorem says that f(D)
is open, a contradiction since D is connected.

Solution 2 (Rouché): Given w ∈ D, it suffices to show that g(z) = f(z)−w has a root in D.
We have that the constant function −w satisfies |−w| < 1 = |f(z)| on the unit circle. Thus,
by Rouché, f and g have the same number of roots in D, which is at least one by part (a).

■

5. Let H be the upper half-plane. Construct a one-to-one conformal map from H to the
region below the parabola y = 9x2, i.e. {z = x + iy ∈ C : y < 9x2}. Please express your
answer as an explicit function of z.

Solution: We want the boundary of H, the real axis, to map to the parabola v = 9u2 in the
w-plane. We know that the map z 7→ z2 maps lines to parabolas or rays, so let us look for
a map of the form

f(z) = c+ bz + az2.

Since v = 9u2 intersects the origin, we can set c = 0 so that the origin maps to itself.
Restricting to the real line, f becomes

f(x) = bx+ ax2,

and the imaginary part of f must satisfy v = 9u2. This quadratic dependence of v = Im(f)
on the u = Re(f) suggests that a should be purely imaginary. For simplicity, we set a = 9i.
Then

f(x) = bx+ (9i)x2.

Letting b = −1, we find that u = x and v = i(9u2), so our candidate function is

f(z) = −z + (9i)z2.
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Note that b = 1 would not work, as then injectivity would fail. Computing the derivative,
we see that

f ′(z) = −1 + 18iz,

which vanishes at z = −i/18 /∈ H. Thus, f is conformal on H. It remains to check that H
folds under the parabola. Indeed, checking the point z = i, we compute f(i) = −10i, so by
continuity f maps H under the parabola v = 9u2.

■
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