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Abstract

The problem of determining the spectrum of eigenvalues of the Laplace operator is impor-
tant for physical applications and mathematical theory. A particular case of these problems
are the Steklov eigenvalue problems, where the spectral parameter appears in the boundary
condition. We know little about the eigenvalues of vectorial analogs of the Laplace opera-
tor, their physical interpretations, or the algorithms used to approximate them. One such
analog is the curl-curl operator found in Maxwell’s equations, describing the behaviour of
electric and magnetic fields. Even formulating a well-defined Steklov eigenvalue problem
for the curl-curl operator is challenging due to an eigenvalue of infinite multiplicity. We in-
stead introduce two parameters and study a closely related Steklov eigenvalue problem for
Maxwell’s equations. We are not aware of any numerical analysis of this modified eigenvalue
problem. We provide two approximation approaches based on the finite element method.
We describe a series of numerical experiments that examine the convergence of our ap-
proximations for specified parameters. Our approach establishes the foundation for further
numerical studies of the modified Steklov-Maxwell eigenvalues using finite elements.

Keywords: curl-curl operator; Maxwell’s equations; Steklov eigenvalue problems; finite
element method; convergence study
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Chapter 1

Introduction

In his 1966 article, Kac [9] asked “Can one hear the shape of the drum?” to explore the
relation between the structure of a domain and the eigenvalues of its differential operators.
The answer provides a beautiful relationship between linear algebra and partial differential
equations. In particular, we arrive at an eigenvalue problem for the Laplace operator (com-
monly called the Laplacian). The eigenvalues are intimately connected to the shape of the
domain and the prescribed boundary conditions.

A particularly intriguing eigenvalue problem is the Steklov eigenvalue problem for the
Laplacian, frequently referred to as the Steklov-Laplace problem. Let

Rd = {(x1, . . . , xd) : xi ∈ R, i = 1, . . . , d}.

Suppose Ω ⊆ Rd is a bounded domain with sufficiently smooth boundary Γ = ∂Ω. Let
a · b denote the dot product of vectors a,b ∈ Rd. As described by Levitin, Mangoubi, and
Polterovich in [14], the Steklov-Laplace problem is to find pairs consisting of a non-zero
function u and a constant σ such that∆u = 0 in Ω,

∇u · n = σu on Γ,
(1.1)

where ∇ := ( ∂
∂x1

, . . . , ∂
∂xd

) is the gradient operator on Ω, n is the outward unit normal
vector on Γ, and ∆u := ∇ · ∇u is the Laplacian on Ω. We call any pair (σ, u) solving (1.1)
an eigenpair, where u is an eigenfunction with corresponding eigenvalue σ. The set of all
eigenvalues of an eigenvalue problem is called its spectrum. Vladimir Steklov formulated
the problem (1.1) around the year 1900, and it is one of his significant contributions to
mathematical physics. The eigenvalues of (1.1) are closely related to the sloshing prob-
lem: how does one’s morning coffee spill over when rushing out the door to get to work?
In particular, the Steklov boundary condition in (1.1) is present in the sloshing problem;
by understanding the Steklov eigenvalues of the Laplacian, we can better understand the
sloshing behaviour of a fluid as the eigenvalues are frequencies describing the oscillations
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of the fluid in its cup. Namely, the derivative of u near Γ becomes large as σ increases, so
the oscillations of u localize near the boundary of the domain. Kuznetsov et al. [10] provide
a fascinating overview of this result, along with a detailed history of problem (1.1). For a
thorough summary of the Steklov-Laplace problem and related open problems, we refer the
reader to [5].

We call (1.1) the strong formulation of the Steklov-Laplace problem. While solving the
strong form of an eigenvalue problem is essential for describing various physical phenomena,
it is convenient to work instead with a weak formulation. As an example, let us define
the weak formulation of (1.1). Firstly, let H1(Ω) denote the first Sobolev space, consisting
of functions whose derivatives are “well-behaved” (which we will define more precisely in
Chapter 2). The weak formulation of the Steklov-Laplace problem is to find u ∈ H1(Ω) and
σ ∈ C such that for all v ∈ H1(Ω),∫

Ω

∇u · ∇v dx = σ

∫
Γ

uv ds. (1.2)

Throughout this paper, dx and ds are integration elements corresponding to volume inte-
grals and surface integrals, respectively. See [14] for a derivation of (1.2).

Solutions of the strong and weak formulations of an eigenvalue problem are called strong
and weak solutions, respectively. Strong solutions are always weak solutions, and the con-
verse typically holds under problem-specific regularity assumptions. Essentially, the function
space containing the strong solutions is a proper subset of the space containing the weak
solutions. Thus, the weak and strong formulations of an eigenvalue problem are intimately
connected. Since weak problems may possess solutions even when strong solutions do not
exist, these formulations are invaluable in numerical analysis. For example, given a weak
solution (σ, u) of (1.2), if we attempt to show that (σ, u) solves the strong problem, we will
quickly realize that u ∈ H1(Ω) is not sufficient: we need better-behaved derivatives than
H1(Ω) provides. Regardless, a comprehensive numerical study of a weak problem often
produces valuable insights into the strong problem’s behaviour.

Notice that the Steklov-Laplace problem involves a scalar field u. However, numerous
differential operators act on vector fields, so we can generalize the problem to the vectorial
case. For instance, a natural analog of the Laplacian for vector fields is the curl-curl operator,
or the “curl of a curl”, defined as

curl curlu := ∇ × (∇ × u),

where ∇ is the gradient operator on R3, u = (u1(x, y, z), u2(x, y, z), u3(x, y, z)) is a differ-
entiable vector field, and × denotes the cross product on R3. The curl of a vector field,
curlu := ∇ × u, is a vector that measures the tendency of u to rotate. Therefore, curl curlu
measures the tendency of curlu to rotate, or how the rotation of u rotates at a point. Stud-
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ies of the curl-curl operator apply to various areas of physics, such as electromagnetics, the
theory of superconductors, and magnetohydrodynamics; it is beneficial to investigate the
curl-curl operator’s behaviour with different boundary conditions [11].

Formulating a meaningful generalization of the Steklov-Laplace problem (1.1) to vecto-
rial problems is not a trivial task, as we will see shortly. One attempt at generalizing the
problem to the curl-curl operator is to look for vector fields u and scalars λ ∈ C such thatcurl curlu = 0 in Ω,

ν × (curlu) = λu on Γ,
(1.3)

where Ω ⊆ R3 is a bounded domain with sufficiently regular boundary Γ = ∂Ω, and ν is the
unit outward normal vector on Γ. Concretely, Γ is of class C1,1 (as defined in [12]). However,
there is a major issue with this formulation. Namely, if ϕ : R3 → R is a differentiable scalar
function, then curl gradϕ = 0, where the vector field gradϕ := ∇ϕ is the gradient of ϕ. Thus,
if u is any gradient, then the eigenpair (0,u) satisfies (1.3). In other words, the eigenvalue
λ = 0 has infinite multiplicity, and the other eigenvalues accumulate only at infinity. If
eigenvalues represent frequencies, then determining the non-zero frequencies is vital. But
since λ = 0 has infinite multiplicity, the linear system we use to approximate the eigenvalues
of (1.3) consists of only zero eigenvalues. Consequently, we must modify the problem and
instead study a related problem with properly behaved eigenvalues.

The modified Steklov-Maxwell eigenvalue problem, first introduced by Lamberti &
Stratis in [11], is to find vector fields u and constants λ such that

curl curlu − αu − θgraddivu = 0 in Ω,

ν × (curlu) = λu on Γ,
(1.4)

where α ∈ R and θ > 0 are parameters, and divu := ∇ · u is the divergence of u. The
parameters α and θ act to shift the eigenvalues λ of (1.4) away from 0, so we call αu and
θgraddivu regularization terms. This variant of the problem stems from the time-harmonic
form of Maxwell’s equations,

curlE − iωµH = 0, curlH + iωϵE = 0,

where E and H are the spatial components of an electric and magnetic field, respectively,
and ω, µ, and ϵ are constants.

Camaño, Monk & Lackner in [3] formulated the original Steklov-Maxwell eigenvalue
problem for use in inverse scattering theory. However, the spectrum of the unmodified
problem on the unit ball consists of two sequences of eigenvalues, one tending to 0 and
the other to infinity. Thus, Lamberti & Stratis proposed (1.4) as an alternative problem
that exhibits just one sequence of eigenvalues that monotonically decreases to negative
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infinity. The spectrum of the original problem and (1.4) is discrete in the sense that each
point is isolated. Furthermore, each eigenvalue of (1.4) is of finite multiplicity. While other
modifications have been proposed [3], [6], (1.4) has the advantage of being easily discretized
for numerical studies.

The primary goal of this work is to develop a numerical framework for studying the
modified Steklov-Maxwell problem. In particular, we apply the finite element method to
approximate the eigenvalues of (1.4). It is of principal importance in numerical analysis to
characterize the consistency, stability, and convergence of a given algorithm, which impacts
robustness and efficiency. Thus, we conduct experiments to numerically study the conver-
gence of the finite element method for our problem. We also examine how sensitive the
corresponding matrices are to small changes in their data.

Chapter 2 presents the modified Steklov-Maxwell problem and its theoretical properties.
We begin by briefly explaining the properties of the Steklov-Laplace problem and precisely
restating its weak formulation. In doing this, we build the theoretical framework to gener-
alize the problem to the curl-curl operator and discuss the corresponding issues with our
generalization. Subsequently, we present the modified Steklov-Maxwell problem and derive
its weak and variational forms. Lastly, we summarize the work of Lamberti & Stratis in [11]
and Ferraresso, Lamberti, & Stratis in [4] as their research effectively builds the theoretical
framework of the problem.

In Chapter 3, we formulate the discrete form of the problem to apply the finite element
method. We begin by introducing the finite element method from an abstract perspective.
We then define the discrete form of the modified Steklov-Maxwell problem, discuss the cor-
responding nonconforming and conforming methods for approximating its solutions, and
detail the implementation of the algorithm using FreeFem++ [7] (a finite element method
software built in C++) and MATLAB [8]. The final section compares nonconforming and
conforming methods to approximate the Steklov-Maxwell eigenvalues. Our computations
show convergence in both cases, though the conforming approach demonstrates better con-
vergence than the nonconforming approach on the cube. We conclude that the conforming
method, while involving ill-conditioned matrices, effectively computes solutions to (1.4).
The following diagram illustrates the structure of the thesis. We encourage the reader to
periodically refer back to Figure 1.1 for a visual view of how the main elements of this thesis
are related.
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The Steklov Eigenvalue
Problem for the

Laplace Operator

The Steklov Eigenvalue
Problem for the

Curl-Curl Operator

The Modified Steklov
Eigenvalue Problem for

Maxwell’s Equations

Formulate
a vectorial

analog

Modify
to get a

well-defined
problem

Strong
Formulation

Weak
Formulation

Variational
Formulation

Theorem 1
Theorem 2
Theorem 3

Theorem 5
Theorem 6 Theorem 7

Discrete
Formulation

Nonconforming
Finite Elements

Conforming
Finite Elements

Approximation via
Finite Elements

Figure 1.1: A flow chart demonstrating the technical elements of the thesis and their relation-
ships. Bold arrows indicate the flow of the thesis and relationships between the elements
and double-lined arrows indicate logical implications. The main concepts related to the
Steklov-Laplace and modified Steklov-Maxwell problems are grouped by the dashed-border
boxes.

5



Chapter 2

The Modified Steklov-Maxwell
Eigenproblem

2.1 Function Spaces

The definitions in this section are from [14, Chapter 2] and [14, Appendix B].
In Chapter 1, we briefly introduced the strong and weak formulations of the Steklov-

Laplace eigenvalue problem, equations (1.1) and (1.2), respectively. We noted that strong
solutions are always weak solutions, but the converse is not necessarily true; the weak
solutions lie in a larger space than the strong solutions. These spaces are the Sobolev spaces,
which arise when we weaken our notion of differentiability. By reinterpreting the meaning
of differentiation and constructing the Sobolev spaces, powerful techniques from functional
analysis can be applied to develop a general theory for studying eigenvalue problems.

Let Ω ⊆ Rd be a bounded domain with Lipschitz boundary Γ = ∂Ω. Roughly, Γ is
locally the graph of a Lipschitz function. We refer the reader to [14, Appendix B Section 3]
for a rigorous definition. For each k ∈ N, let Ck(Ω) denote the set of all real-valued, k times
continuously differentiable functions on Ω. Let Ck

0 (Ω) = {f ∈ Ck(Ω) : supp(f) is compact},
where supp(f) = {x ∈ Ω : f(x) ̸= 0} is the closed support of f . Denote by L2(Ω) the space
of square-integrable and Lebesgue measurable functions1, equipped with the inner product

⟨f, g⟩L2(Ω) :=
∫
Ω

f(x)g(x) dx,

for all f, g ∈ L2(Ω). With this inner product, all Cauchy sequences converge. Hence, we call
L2(Ω) a Hilbert space. This inner product induces a norm

∥f∥2
L2(Ω) := ⟨f, f⟩L2(Ω) =

∫
Ω

f(x)2 dx.

1Strictly speaking, L2(Ω) consists of equivalence classes of functions such that two functions belong to
the same equivalence class if and only if they differ by a set of Lebesgue measure zero.
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Define L1
loc(Ω) to be the set of all Lebesgue measurable functions that are integrable on any

compact subset of Ω. With these spaces, we can define the Sobolev spaces.
Let u, v ∈ L1

loc(Ω) and define ∂j := ∂
∂xj

. We say that v = ∂ju in the weak sense if for
every φ ∈ C1

0 (Ω), we have ∫
Ω

u∂jφdx = −
∫
Ω

φ∂jv dx.

In this case, we call v the weak derivative of u in xj . The Sobolev spaces are defined
recursively using weak derivatives as follows. Let H0(Ω) = L2(Ω). For each k ∈ N, the k-th
Sobolev space, denoted Hk(Ω), is defined as all those u ∈ L2(Ω) such that ∂ju exists in the
weak sense and ∂ju ∈ Hk−1(Ω). These sets become Hilbert spaces when equipped with the
inner products

⟨f, g⟩Hk(Ω) := ⟨f, g⟩L2(Ω) +
d∑

j=1
⟨f, g⟩Hk−1(Ω), (2.1)

where f, g ∈ Hk(Ω). Note that this recursive definition of the inner product is well-defined
as the Sobolev spaces form an increasing sequence of sets. This definition clarifies what we
meant in Chapter 1 by functions in H1(Ω) having “well-behaved” derivatives.

2.2 The Steklov-Laplace Problem

Since the modified Steklov-Maxwell problem is a vectorial generalization of the Steklov-
Laplace problem, we first summarize some noteworthy results concerning the latter. This
section also illustrates some indispensable results of the finite element method applied to
eigenvalue problems (as discussed briefly in Chapter 3). The theorems in this section are
adapted from [14, Chapter 7] and [15, Chapter 11]. The proof techniques used in this section
are motivated by those in [15].

Let ∇ := (∂x1 , . . . , ∂xd
) be the gradient operator on Rd. We begin by explaining the

significance of the Steklov boundary condition ∇u ·n = σu on Γ, where Γ is the (sufficiently
smooth) boundary to some domain Ω ⊆ Rd and n the outward unit normal vector to Γ.
We note that the Steklov-Laplace eigenvalues form a sequence 0 = σ1 < σ2 ≤ . . . increasing
without bound, so we may choose σ to be very large. Since ∇u ·n is the derivative of u along
the outward unit normal to Γ, the Steklov boundary condition ∇u · n = σu indicates that
u is very steep near Γ whenever σ is large. This feature is the essence of Steklov boundary
conditions: as the eigenvalues increase, the oscillations of the corresponding eigenfunctions
become localized near the boundary. With this new understanding of the Steklov-Laplace
problem, we now describe its various formulations and their connections.

In Chapter 1, we noted the benefits of working with a weak formulation. For instance,
this form is convenient for proving various theorems or setting up a “discrete” version of
the problem for numerical studies. However, there is one more formulation we consider

7



called the variational formulation, where we characterize the Steklov-Laplace eigenvalues
as solutions to an optimization problem. This version of the problem is useful for proving
numerous important results. See [5] for a comprehensive overview of these results.

Recall, the weak formulation of the Steklov-Laplace problem (1.1) is to find u ∈ H1(Ω)
and σ ∈ C such that for all v ∈ H1(Ω),∫

Ω

∇u · ∇v dx = σ

∫
Γ

uvds. (2.2)

The elements of H1(Ω) are commonly referred to as test functions. We show that solving
(2.2) is equivalent to solving an optimization problem, the solutions of which we call vari-
ational solutions. The relationships between the strong, weak, and variational solutions to
the Steklov-Laplace problem are summarized in the following chain of implications:

Strong Solution Weak Solution Variational Solution.

This section is devoted to proving the equivalence between the weak and variational solu-
tions.

We prove the above equivalence in three steps. We first characterize the first non-zero
Steklov-Laplace eigenvalue, σ2, as a solution to a minimization problem (Theorem 1). We
then generalize this argument to the n-th eigenvalue, σn, though the minimization prob-
lem in this case has additional constraints (Theorem 2). Finally, we state the variational
formulation of the Steklov-Laplace problem and use the previous two results to prove its
equivalence to the weak formulation (Theorem 3).

Denote the Steklov-Laplace eigenvalues on Ω by 0 = σ1(Ω) < σ2(Ω) < . . . where the
σk(Ω) increase without bound. Note that the eigenfunction corresponding to σ1(Ω) is a
constant, so the following theorem characterizes the first non-zero eigenvalue, σ2(Ω), as the
solution to a minimization problem.

Theorem 1 (Minimum Principle for the 2nd Steklov-Laplace Eigenvalue). Let

Q(w) =
∥∇w∥2

L2(Ω)

∥w∥2
L2(Γ)

for all w ∈ H1(Ω). Then σ2(Ω) is the minimum value of Q(w) over all non-zero test
functions w ∈ H1(Ω) satisfying ∫

Γ

w ds = 0.

Furthermore, any minimizing value of Q(w) is an eigenfunction corresponding to σ2(Ω).

Proof. Suppose u solves the minimum problem and let m be the minimum value. Since
Q is non-negative, so is m. Consider any test function v ∈ H1(Ω) and let ϵ > 0. Define
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J(ϵ) = Q(u+ ϵv). Then J attains a minimum at ϵ = 0. Applying the quotient rule to J and
simplifying, we find that ∫

Ω

∇u · ∇v dx = m

∫
Γ

uvds.

Since v is arbitrary, u is a solution of (2.2).
To show that m = σ2(Ω), let vj be the j-th eigenfunction of the Steklov-Laplace problem

with corresponding eigenvalue σj(Ω). Then m ≤ Q(vj) = σj(Ω) by (2.2). □

We can generalize Theorem 1 to the n-th eigenvalue as follows.

Theorem 2 (Minimum Principle for the n-th Steklov-Laplace Eigenvalue). The n-th Steklov-
Laplace eigenvalue σn(Ω) is the minimum of Q(w) over all non-zero w ∈ H1(Ω) such that
w is orthogonal (in the L2 sense) to the first n− 1 eigenfunctions v1, . . . , vn−1.

Proof. The n = 1 case is immediate as the eigenfunction is constant, and the n = 2 case is
Theorem 1. We may assume the Steklov-Laplace eigenfunctions are pairwise orthogonal.

Let n ≥ 3 and suppose m is the minimum value of Q as in the theorem statement. Let
u be the minimizing value of Q corresponding to m. The proof showing m is an eigenvalue
of (2.2) is identical to the proof presented in Theorem 1. We show m = σn(Ω).

Let k ≥ n and let vk denote the k-th Steklov-Laplace eigenfunction. Then

m = Q(u) ≤ Q(vk) = σk

by the minimizing properties of u and (2.2). Also, the problem of minimizing Q over all
non-zero w orthogonal to the first n − 1 eigenfunctions has more constraints than the
minimization problem over all non-zero w orthogonal to the first n − 2 eigenfunctions.
Thus, if m′ minimizes the latter problem, then m′ ≤ m. By induction, m′ = σn−1, so we
have that σn−1 ≤ m ≤ σn. It follows from u ̸= vn−1 that m = σn. □

We use Theorem 2 to provide an elementary proof of the variational Steklov-Laplace
problem. Our proof contrasts with the proof presented in [14], which uses a direct sum of
two function spaces and the Dirichlet-Laplace eigenvalue problem.

Theorem 3 (The Variational Formulation of the Steklov-Laplace Problem).
For each n ∈ N,

σn(Ω) = min
V ⊆H1(Ω)
dim V =n

max
w∈V
w ̸≡0

Q(w). (2.3)

Proof. Let B = {w1, . . . , wn} be a set of n linearly independent functions in H1(Ω), and
let V = span(B). Choose c1, . . . , cn ∈ R not all zero such that w = c1w1 + . . . + cnwn is
orthogonal to the first n− 1 Steklov-Laplace eigenfunctions. Such a choice can be made as
this amounts to solving an (n− 1) ×n linear system for the zero vector, which always has a
non-trivial solution. By Theorem 2, σn ≤ Q(w) ≤ maxQ(w), where we take the maximum
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over all possible linear combinations of the basis elements. Since B is arbitrary, we may take
the minimum on each side to get

σn(Ω) ≤ min
V ⊆H1(Ω)
dim V =n

max
w∈V
w ̸≡0

Q(w).

Conversely, let wi = vi, for each i = 1, . . . , n, where vi is the i-th eigenfunction. We may
assume the eigenfunctions are pairwise orthogonal and normalized on the boundary: for all
i = 1, . . . , n we have ∥vi∥2

L2(Γ) = 1. Let V = span({v1, . . . , vn}). Then each non-zero w ∈ V

can be represented as w = c1v1 + . . . + cnvn for some non-zero vector (c1, . . . , cn) ∈ Rn.
Since the vk are pairwise orthogonal and each is normalized on Γ,

Q(w) =
∥
∑n

i=1 ci∇vi∥2
H1(Ω)

∥
∑n

i=1 civi∥2
H1(Γ)

=

∫
Ω

(
∑n

i=1 ci∇vi) · (
∑n

i=1 ci∇vi) dx∫
Γ

(
∑n

i=1 civi) · (
∑n

i=1 civi) ds

=

∑n
i=1 c

2
i

∫
Ω

|∇vi|2 dx∑n
i=1 c

2
i

∫
Γ

|vi|2 ds

=
∑n

i=1 c
2
iσi∑n

i=1 c
2
i

≤
∑n

i=1 c
2
iσn∑n

i=1 c
2
i

= σn.

Since w was arbitrarily chosen, σn = maxw Q(w) for our particular choice of V . Hence,

min
V ⊆H1(Ω)
dim V =n

max
w∈V
w ̸≡0

Q(w) ≤ σn(Ω),

proving the claim. □

In particular, Theorem 3 says that (2.2) is equivalent to (2.3), so determining the weak
Steklov-Laplace eigenpairs is equivalent to solving an optimization problem. We now have
the freedom to work with whichever formulation is most convenient. In general, the varia-
tional formulation (2.3) is a powerful tool for proving geometric inequalities involving the
eigenvalues. Determining such inequalities is an active area of research for the Steklov-
Laplace problem, as we can rarely find the eigenvalues exactly.

We conclude this section with the statement of a special scaling property of the eigen-
values. For c > 0 given, the set Ωc = {cx : x ∈ Ω} is called a homothety of Ω and c the
homothety ratio.
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Theorem 4 (Homothety Property of the Steklov-Laplace Problem). Let c > 0 and let Ωc

be a homothety of Ω. Then for all n ∈ N,

σn(Ω) = cσn(Ωc).

Namely, determining the eigenvalues for the domain Ω tells us the eigenvalues on any scalar
multiple of Ω. The theorem follows from a change of variables in the variational formulation
and some simplification. We will generalize Theorem 4 to the modified Steklov-Maxwell
eigenvalue problem in Section 2.6, though the statement becomes more complicated.

2.3 The Curl-Curl Operator

The Steklov-Laplace problem is very well-studied [5]. Thus, one may wonder how the prob-
lem generalizes to operators that act on vector fields. One such operator is the curl-curl
operator, which, like the Laplace operator, is a second-order differential operator. In Chap-
ter 1, we briefly saw the failure of the natural analog of the Steklov-Laplace problem to the
curl-curl operator. We expand on these ideas in this section.

Let Ω ⊆ R3 be a bounded domain with sufficiently regular boundary Γ = ∂Ω. Let
ν denote the outward unit normal to Γ. As in Chapter 1, the curl operator is the cross
product curlu = ∇×u. Based on the strong Steklov-Laplace problem, the candidate Steklov
eigenproblem for the curl-curl operator is to find vector fields u and constants λ ∈ C such
that curl curlu = 0 in Ω,

ν × (curlu) = λu on Γ.
(2.4)

The immediate issue with (2.4) is that any gradient solves the problem with λ = 0, so the
eigenspace corresponding to λ = 0 has infinite multiplicity. Hence, the problem is not well-
defined, as our general theory of eigenvalue problems requires each eigenvalue to be of finite
multiplicity. Furthermore, a numerical study of the eigenvalues of (2.4) is impossible as the
linear system we use for our approximations has only zero eigenvalues. That is, we cannot
numerically study the non-zero eigenvalues. However, we can still say something about the
eigenfunctions corresponding to non-zero eigenvalues of (2.4).

Remark. If λ is a non-zero eigenvalue of (2.4) and u a corresponding eigenfunction, then
u is tangential. That is, ν · u = 0 on Γ.

Proof. Since u is an eigenfunction of (2.4) with corresponding eigenvalue λ ∈ C, then it
satisfies the boundary condition ν × (curlu) = λu on Γ. Taking the dot product of the
boundary condition with ν gives λ(ν · u) = 0, as ν × (curlu) is orthogonal to ν. However,
λ ̸= 0, so ν · u = 0 on Γ, as desired. □
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2.4 The Original Steklov-Maxwell Problem

We introduced (1.4) as the modified Steklov-Maxwell problem because it arises from a slight
modification to the original problem formulated by Camaño, Monk, & Lackner in [3]. Before
studying (1.4), we introduce the original Steklov-Maxwell problem and briefly discuss the
necessity of modifying it.

Let us take Ω to be the unit ball in R3, bounded by the unit sphere Γ = ∂Ω. For a
vector field w on Ω, its tangential component is defined as wT := ν × w × ν, where ν is the
outward unit normal of Ω. The Steklov-Maxwell eigenvalue problem is to find vector fields
w and constants λ ∈ C such thatcurl curlw − αw = 0 in Ω,

ν × curlw = λwT on Γ,
(2.5)

where α ∈ R is a constant that is not an eigenvalue of the problemcurl curlv = αv in Ω,

ν × curlv = 0 on Γ.

Problem (2.5) is shown in [3] to have infinitely many eigenvalues on the unit ball, forming
a real-valued sequence {λn}n∈N monotonically increasing to infinity.

Assume α ̸= 0. Define u := 1/(i
√
α)curlw, where i =

√
−1 and w is an eigenvector of

(2.5) with corresponding eigenvalue λ ̸= 0. Employing various vector identities gives that u
is an eigenvector of (2.5) corresponding to the eigenvalue −α/λ. That is,

curl curlu − αu = 0 in Ω,

ν × curlu = −α
λ uT on Γ.

In particular, {−α/λn}n∈N is another sequence of eigenvalues of (2.5) on Ω, and −α/λn →
0 as n → ∞. Thus, assuming λ1 ̸= 0, there is a second sequence of eigenvalues that
converges to zero. This is an obstacle as our theory of eigenvalue problems relies on the
problem having a single sequence of eigenvalues increasing or decreasing without bound.
Furthermore, the linear operator corresponding to (2.5) is not compact (a property crucial
for well-defined eigenvalue problems). See [3] for the complete details of the original Steklov-
Maxwell eigenvalue problem. The modification proposed by Lamberti & Stratis in [11],
problem (1.4), corrects both of these issues.

While (2.5) is the motivating problem for the work of Lamberti & Stratis, our interests lie
in formulating a vectorial analog of the Steklov-Laplace problem (1.1). Thus, our approach
emphasizes studying the modified Steklov-Maxwell problem in the context of determining a
well-defined Steklov eigenvalue problem for the curl-curl operator. However, the issues with
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both the original Steklov-Maxwell problem (2.5) and our attempt at a Steklov-Curl-Curl
problem (2.4) demonstrate that it is not straightforward to formulate and study vectorial
Steklov eigenvalue problems.

2.5 The Weak Modified Steklov-Maxwell Problem

2.5.1 Problem Statement

A prerequisite to establishing the numerical framework of the Steklov-Maxwell problem (1.4)
is a better understanding of its theoretical foundation. As the modified Steklov-Maxwell
problem is a vectorial analog of the Steklov-Laplace problem, we wish to generalize the
latter’s properties to the former. However, we first need a weak formulation of the Steklov-
Maxwell problem. In this chapter, we assume Ω ⊆ R3 is a bounded domain of class C1,1 (as
defined in [12]). That is, the boundary of Ω, written Γ = ∂Ω, is sufficiently regular. Unless
otherwise stated, the definitions and results of this section are adapted from Lamberti &
Stratis in [11].

Just as we needed the Sobolev spaces for the Steklov-Laplace problem, we also need
vectorial analogs of these spaces for the modified Steklov-Maxwell problem. We define the
vectorial Sobolev spaces and their norms as

H(curl,Ω) := {u ∈ (L2(Ω))3 : curlu ∈ (L2(Ω))3},

∥u∥H(curl,Ω) := ∥u∥2
(L2(Ω))3 + ∥curlu∥2

(L2(Ω))3 ,

H(div,Ω) := {u ∈ (L2(Ω))3 : divu ∈ L2(Ω)},

∥u∥H(div,Ω) := ∥u∥2
(L2(Ω))3 + ∥divu∥2

L2(Ω),

where divu = ∇ · u is the divergence of u. Also define

H0(div,Ω) := {u ∈ H(div,Ω) : ν · u = 0 on Γ}, (2.6)

where ν is the unit outward normal on Γ. Any vector field u satisfying u · ν = 0 is called
tangential. The normed space of test functions we work in is XT(Ω), defined as

XT(Ω) := H(curl,Ω) ∩H0(div,Ω), (2.7)

∥u∥2
H(curl,Ω)∩H(div,Ω) := ∥u∥2

(L2(Ω))3 + ∥curlu∥2
(L2(Ω))3 + ∥divu∥2

L2(Ω).

Note that XT(Ω) is a Hilbert space with an inner product defined in [11]. As previously
shown, any non-trivial eigenfunction of (2.4) is tangential. Since XT(Ω) only consists of
tangential fields, this supports our choice of studying (1.4) instead of other modifications
of the original Steklov-Maxwell Problem.

13



Recall that the strong formulation of the modified Steklov-Maxwell problem, as stated
in [11], is to find u ∈ XT(Ω), λ ∈ C such that

curl curlu − αu − θgraddivu = 0 in Ω,

ν × (curlu) = λu on Γ.
(2.8)

Here, α ∈ R and θ > 0 are parameters, and graddivu = ∇(∇ · u) is the gradient of the
divergence of u. The corresponding weak problem is to find constants λ ∈ C and vector
fields u ∈ XT(Ω) such that for each test function v ∈ XT(Ω),∫

Ω

curlu · curlv dx− α

∫
Ω

u · v dx+ θ

∫
Ω

divu divv dx = −λ
∫
Γ

u · vds. (2.9)

As in the Steklov-Laplace case, the weak formulation is equivalent to the strong formula-
tion, provided that the weak eigenfunctions are sufficiently regular. Furthermore, Lamberti
& Stratis prove in [11] that the eigenvalues of the weak problem form a monotonically
decreasing sequence of real numbers tending to negative infinity. In particular, they solve
the issue in [3] where the original Steklov-Maxwell spectrum consists of two sequences, one
increasing to infinity and the other tending to zero.

Note that (2.9) resembles the weak form of the Steklov-Laplace problem (2.2), except
for the terms with the parameters α and θ. For instance, writing the Laplacian of a function
u as ∆u = ∇ · ∇u, we see that the terms∫

Ω

curlu · curlv dx,
∫
Ω

∇u · ∇v dx

both involve the first-order differential operator used to define the curl-curl and Laplace
operators. Additionally, the right-hand side of both equations involves an integral over the
boundary and the multiplication of an eigenfunction and a test function. The likeness of
the two problems demonstrates that the modified Steklov-Maxwell problem is a vectorial
analog of the Steklov-Laplace problem. In Section 2.6, we see further common features of
the two problems in their variational formulations and homothety properties.

2.5.2 Strong Implies Weak

This section corresponds to the logical implication between the strong formulation and weak
formulation in Figure 1.1. We show that any solution to (2.8) is a solution to (2.9). First,
we need two integration by parts formulas, adapted from [11].

Lemma 1. Let E and v be sufficiently regular vector and scalar fields, respectively. Then∫
Ω

v divE dx =
∫
Γ

vE · nds−
∫
Ω

gradv · E dx.
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Lemma 2. Let u and v be sufficiently regular vector fields. Then∫
Ω

curlu · curlv dx =
∫
Ω

curl curlu · v dx−
∫
Γ

(ν × curlu) · vds.

Lemmas 1 and 2 follow by integrating the vector identities

div (vE) = vdivE + gradv · E, (2.10)

divu × v = v · curlu − u · curlv, (2.11)

and applying the Divergence Theorem. We now have the following result:

Theorem 5. Any solution of (2.8) is a solution of (2.9).

Proof. Suppose (λ,u) ∈ C×XT(Ω) is an eigenpair of (2.8). Consider any v ∈ XT(Ω). Take
the dot product on both sides of the equation in (2.8) and integrate over Ω to get∫

Ω

curl curlu · v dx− α

∫
Ω

u · v dx− θ

∫
Ω

(graddivu) · v dx = 0. (2.12)

Applying Lemma 1 to the last term of (2.12), we have∫
Ω

(graddivu) · v dx =
∫
Γ

(divu)v · nds−
∫
Ω

divu divv dx.

But v ∈ XT(Ω) means that v is tangential, so the surface integral vanishes.
Now, apply Lemma 2 to the first integral of (2.12) to get∫

Ω

curl curlu·v dx =
∫
Ω

curlu·curlv dx+
∫
Γ

(ν×curlu)·vds =
∫
Ω

curlu·curlv dx+λ
∫
Γ

u·vds.

Simplifying returns (2.9). □

2.5.3 Weak Implies Strong, with Assumptions

We can also show that any solution to (2.9) is a solution to (2.8), assuming the solution is
sufficiently regular.

Theorem 6. A sufficiently regular solution of (2.9) is also a solution of (2.8).

Proof. Suppose u ∈ XT(Ω) is an eigenfunction of the weak problem with corresponding
eigenvalue λ ∈ C. Assume u is sufficiently regular, so that we may take its second order
partial derivatives. Then reversing the steps in Theorem 5, we arrive at the equation∫

Ω

(curl curlu − αu − θgraddivu) · v dx =
∫
Γ

(ν × curlu − λu) · vds
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for every v ∈ XT(Ω). Note that the left-hand side depends only on Ω, an open set, and
hence we may assume v = 0 on Γ. Thus,∫

Ω

(curl curlu − αu − θgraddivu) · v dx = 0

in Ω. Since this holds for any test function v, we conclude that

curl curlu − αu − θgraddivu = 0

in Ω. Similarly, on Γ we have
ν × (curlu) − λu = 0.

Therefore, both equations of (2.8) are satisfied. □

2.6 Properties of the Modified Steklov-Maxwell Problem

Given the weak formulation (2.9), we can generalize some properties of the Steklov-Laplace
problem. We will see that additional assumptions are needed to generalize the latter’s
properties.

Let A1, A2, . . . denote the eigenvalues of the problem∫
Ω

curlu · curlv dx+ θ

∫
Ω

divu divv dx = A

∫
Ω

u · v dx, ∀v ∈ (H1
0 (Ω))3,

where H1
0 (Ω) is the subspace of the first Sobolev space H1(Ω) consisting of functions that

vanish on Γ. The following theorem from [11] holds.

Theorem 7 (The Variational Formulation of the Modified Steklov-Maxwell Problem).
Suppose α ̸= Ak, for each k ∈ N. Then the n-th eigenvalue of (2.9) is

λn = − min
V ⊆XT(Ω)
dim V =n

max
v∈V \(H1

0 (Ω))3

∫
Ω(|curlv|2 − α|v|2 + θ|divv|2) dx∫

Γ |v|2 ds
. (2.13)

Furthermore, each eigenvalue is of finite multiplicity.

Thus, there is a well-defined variational formulation of the modified Steklov-Maxwell prob-
lem, assuming α is carefully chosen. Moreover, (2.13) is equivalent to (2.9). We require
v ∈ V \(H1

0 (Ω))3 so that the proof Lamberti & Stratis [11] present is valid. They character-
ize the λk using the eigenvalues of a related linear operator whose eigenvalues correspond to
those of (2.8). To avoid an infinite-dimensional eigenspace, they insist that v /∈ (H1

0 (Ω))3.
Additionally, the condition that α does not agree with any of the Ak ensures that the weak
formulation (2.9) does not reduce to a different eigenvalue problem.

We conclude by stating and proving an original result generalizing Theorem 4.
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Theorem 8 (Homothety Property for the modified Steklov-Maxwell Eigenproblem).
Let α ∈ R, θ > 0. Suppose α ̸= Ak for all k ∈ N. Let c > 0 be given and denote by Ωc a
homothety of Ω with ratio c. Then for every n ∈ N,

λn(α, θ,Ω) = cλn( α
c2 , θ,Ωc). (2.14)

Proof. Suppose (λ,u) ∈ R × XT(Ω) is an eigenpair of (1.2) for fixed parameters α and θ.
Then for each v ∈ XT(Ω),∫

Ω

curlu · curlv − αu · v + θdivu divv dx = −λ
∫

∂Ω

u · vds. (2.15)

Consider the change of variables xi = yi/c, for i = 1, 2, 3. Under this change of variables,
linear dimensions are scaled by 1/c, so areas and volumes are scaled by 1/c2 and 1/c3,
respectively. Furthermore,

∂g

∂xj
= ∂g

∂yj

∂yj

∂xj
= c

∂g

∂yj

for all differentiable scalar fields g, so the curl and div operators are each scaled by c. Thus,
(2.15) becomes∫

Ωc

c2(curlu · curlv − α

c2 u · v + θdivu divv) 1
c3 dy = −λ

∫
∂Ωc

u · v 1
c2 ds.

Simplifying gives that λ/c is an eigenvalue for (2.9) with parameters (α/c2, θ) on the
domain Ωc. Applying Theorem 7 gives (2.14). □

Theorem 8 illustrates that knowing the eigenvalues for a given domain and parameters
provides the eigenvalues for infinitely many other problems. Note that this result is not a
direct generalization of Theorem 4, as we must scale the parameters involved in the modified
Steklov-Maxwell problem. However, if α = 0, the eigenvalues are scaled in relation only to
the homothety of Ω (the parameters of the two problems are the same). In this case, we
have a natural generalization of Theorem 4.

In this chapter, we have examined the common features of eigenvalue problems through
the Steklov-Laplace and modified Steklov-Maxwell problems. We have stated the various
formulations of the latter and discussed the different motivations for studying it. With the
theoretical foundation of the problem explained, we now begin our study of its numerical
framework.
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Chapter 3

The Discrete Modified
Steklov-Maxwell Eigenproblem

This chapter contains the core material of this work. We first introduce the finite element
method. We then present our main results characterizing the discrete formulation of the
modified Steklov-Maxwell eigenvalue problem and discuss its convergence and conditioning.

3.1 Finite Element Method

In this section, we follow the notation, definitions, and theorems of Braess [2].

3.1.1 The Characterization Theorem

Let V be a real vector space. We call a function a : V ×V → R a bilinear form if a(·, ·) is linear
in each of its arguments. We say a(·, ·) is symmetric if a(x, y) = a(y, x) for all x, y ∈ V . Also,
a(·, ·) is positive if a(x, x) > 0 for each non-zero x ∈ V . A linear transformation l : V → R
is called a linear functional.

One of the most important theorems in finite element theory is the Characterization
Theorem, as stated in [2].

Theorem 9 (Characterization Theorem). Suppose V is a vector space over R and let
a : V ×V → R be a symmetric positive bilinear form. Additionally, let l be a linear functional
on V . Then the function

J(v) := 1
2a(v, v) − l(v)

attains its minimum over V at u if and only if

a(u, v) = l(v) (3.1)

for every v ∈ V . Furthermore, if (3.1) has a solution, it is unique.

The Characterization Theorem gives us an equivalence between the variational form and the
weak form of a problem. In general, solutions may not exist. However, the work of Lamberti
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& Stratis in [11] and Ferraresso, Lamberti & Stratis in [4] settle this issue; we may assume
there is a solution to the modified Steklov-Maxwell problem.

The Characterization Theorem as stated above does not explicitly apply to eigenvalue
problems. In such problems, we have two symmetric bilinear forms a(·, ·) and b(·, ·). We
are looking for constants λ and u ∈ V such that a(u, v) = λb(u, v) for every v ∈ V . While
the Characterization Theorem does not apply to this problem, the concepts it illustrates
are useful for our purposes. Boffi [1] describes the abstract characterizations of eigenvalue
problems using bilinear forms. The theory is illustrated in Section 2.2 in Theorems 1, 2,
and 3. Namely, Boffi’s paper shows that the weak and variational formulations of general
eigenvalue problems are equivalent, provided we put certain assumptions on the bilinear
forms. Furthermore, we can formulate an abstract min-max characterization of the eigen-
values. The proofs are similar to those presented in Section 2.2, so our previous analysis of
the Steklov-Laplace problem hints at a general theory for studying eigenvalue problems.

3.1.2 Finite Elements

Let a(·, ·) and b(·, ·) be symmetric bilinear forms on a vector space V (typically a function
space) and assume a is coercive (see [2]). The problem of finding u ∈ V and λ ∈ C such
that

a(u, v) = λb(u, v) (3.2)

for all v ∈ V is a daunting task, as V is typically infinite-dimensional. However, working with
finite-dimensional spaces is significantly easier. Thus, we approximate solutions of (3.2) by
looking instead for solutions in some finite-dimensional space Vh. The finite element method
involves carefully choosing the space Vh.

A finite element is a triplet (K,Pn(K),Σ(K)), where K is a geometric domain (usu-
ally a triangle in 2D or tetrahedron in 3D), Pn(K) is the space of (possibly multivariate)
polynomials of degree at most n on K, and Σ(K) is the space of linear functionals dual to
Pn(K). Finite elements are used to build a finite element space that we can use to discretize
a given variational formulation.

Suppose Ωh ⊆ R3 is a bounded polygonal domain. We assume Ωh is polygonal so that we
can approximate it exactly by tetrahedra. Let h > 0 and suppose Th is some partition of Ωh

into finitely many tetrahedra, each with edge lengths at most 2h. We call Th a triangulation
of Ωh. We say Th is admissible if

1. Ωh =
⋃

T ∈Th
T ;

2. For each T, T ′ ∈ Th, if T ∩ T ′ consists of exactly one point, then the point is a shared
vertex of T and T ′;

3. For each T, T ′ ∈ Th, if T ∩ T ′ consists of more than one point, then T ∩ T ′ is a shared
face of T and T ′.
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Assume now that Ω ⊆ R3 is a bounded (not necessarily polygonal) domain with bound-
ary Γ = ∂Ω of class C1,1. Let Th be a triangulation of Ω. We define the mesh to be
Ωh :=

⋃
T ∈Th

T and assume Th is admissible. The quantity h > 0 is the mesh size, signifying
the maximum edge length among the tetrahedra. The domain Ωh is essentially a polygonal
domain approximating Ω. As h tends to zero, Ωh becomes a better approximation of Ω (see
Figure 3.1). On each T ∈ Th, there is a corresponding finite element (T, Pn(T ),Σ(T )). We let
Vh consist of all vector fields uh = (u1

h, u
2
h, u

3
h) such that ui

h|T ∈ Pn(T ) for all T ∈ Th, and ui
h

is piecewise continuous on Ωh for i = 1, 2, 3. The space Vh is called the finite element space.
Since we assume that ui

h is continuous over the edges of Ωh, the values of ui
h must agree on

each vertex of the shared edge. For instance, if e is a shared edge of tetrahedra T1, T2 ∈ Th

and v1, v2 are the vertices of e, then u|T1(v1) = u|T2(v1) and u|T1(v2) = u|T2(v2). Note there
are numerous other possible continuity assumptions, but we work only with piecewise con-
tinuous finite elements in this thesis. The union of the standard basis of each Pn(T ) forms a
basis for Vh, as the function values in each tetrahedron are well-defined by Σ(T ). Since each
Pn(T ) is finite-dimensional, the finite element space is finite-dimensional. Solutions to (3.2)
are now approximated by solutions to the discrete problem of finding uh ∈ Vh and λh ∈ C
such that

a(uh,vh) = λhb(uh,vh) (3.3)

for every vh ∈ Vh. This is the finite element method for vectorial problems; a similar
approach is used for scalar problems.

Figure 3.1: Two meshes approximating the unit sphere (built in FreeFem++). The right
image illustrates how taking h to be small results in a better approximation of the sphere.
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3.1.3 A Two-Dimensional Example

Although we defined finite elements for three-dimensional domains, everything described
above holds for two-dimensional domains. We consider a simple two-dimensional example
to illustrate the above concepts. In the following, we only consider scalar functions.

Consider the triangle in Figure 3.2 defined by the vertices x1, x2, x4, which we denote
by △x1x2x4. The interior of △x1x2x4 is a domain, so we can create a mesh by adding an
edge x2x3, which partitions the domain into triangles T1 = △x1x2x3 and T2 = △x2x3x4.
For i = 1, 2, we define the finite elements (Ti, P1(Ti),Σ(Ti)). Note that the polynomials in
P1(Ti) are in two variables, so spaces P1(Ti) and Σ(Ti) are three-dimensional over R. The
finite element space, which we denote by V , consists of functions u such that u|Ti is a linear
polynomial for each i = 1, 2. As we are assuming u is continuous over the edge x2x3, u must
satisfy u|T1(x2) = u|T2(x2) and u|T1(x3) = u|T2(x3).

x1

x2

x4

T1 T2

x3

Figure 3.2: An example mesh in two dimensions.

To demonstrate the relevance of the dual spaces Σ(Ti) in the definition of finite elements,
we show that u is completely determined by its values on the vertices. Without loss of
generality, we show this fact for T1. Consider the basis of P1(T1), B1 = {p1, p2, p3}, defined
by pi(xj) = 1 if i = j and 0 otherwise. Corresponding to this basis is a basis of Σ(T1),
defined as B∗

1 = {ϕ1, ϕ2, ϕ3}, such that ϕi(pj) = 1 if i = j and 0 otherwise. We say B∗
1 is the

basis dual to B1, as Σ(T1) is the dual space of P1(T1). Recall that Σ(T1) consists of linear
functionals, so the ϕi are linear transformations from P1(T1) to R. Given a function u ∈ V ,
we can write v = u|T1 as v = ϕ1(v)p1 + ϕ2(v)p2 + ϕ3(v)p3. By the definition of the pi, we
have that

v(xj) =
3∑

i=1
ϕi(v)pi(xj) = ϕj(v)pj(xj) = ϕj(v).

That is, defining v on the vertices of T1 completely determines v in and on T1. The same
argument applies for u|T2 with the vertices x2, x3, x4.

Given this result, we can link the bases of Σ(T1) and Σ(T2). Suppose B2 = {q2, q3, q4}
is the basis of P1(T2) satisfying qi(xj) = 1 if i = j and 0 otherwise. Let B∗

2 = {ψ2, ψ3, ψ4}
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be the basis of Σ(T2) dual to B2 (in the same way that B∗
1 is dual to B1). Then

ϕ2(u) = u|T1(x2) = u|T2(x2) = ψ2(u),

and similarly ϕ3(u) = ψ3(u). As u is an arbitrary function in V , these equalities hold for
every u ∈ V . Hence, the continuity assumptions we make connect the bases B∗

1 and B∗
2.

3.1.4 Matrices and Approximation

The power of Vh being finite-dimensional is that we can now work with matrices. Suppose
B = {φ1, . . . ,φN } is a basis of Vh. We can define matrices A and B by

(A)ij = a(φi,φj), (B)ij = b(φi,φj)

for all (i, j) ∈ {1, . . . , N}2, where (A)ij is the entry in the i-th row and j-th column of A
(and similarly for B). Since B is a basis of Vh, our solution uh can be written as a linear
combination of the basis elements. That is, uh = c1φ1+. . .+cN φN for some c1, . . . , cN ∈ R.
Thus, choose c = (c1, . . . , cN )T to be the coordinate vector of uh, so that Ac = λhBc. Hence,
solving (3.3) for uh amounts to solving this generalized eigenvalue problem for the vector c.
Using existing algorithms in FreeFem++ and MATLAB, we can construct these matrices
and solve this generalized eigenvalue problem, given the bilinear forms a and b. We briefly
describe the algorithms used in FreeFem++ (in the EigenValue function) and MATLAB
(in the eigs function) to compute eigenvalues in Section 3.2.

3.1.5 The Discrete Steklov-Maxwell Problem

Given the theoretical framework of discretizing eigenvalue problems described in the pre-
vious section, we can now set up a discrete formulation of the modified Steklov-Maxwell
problem. In doing so, we transition from the weak problem (a continuous problem) to a
problem that computers can interpret. This section corresponds to the arrow from the weak
formulation box to the discrete formulation box in Figure 1.1.

From Section 2.5, the weak form of the modified Steklov-Maxwell problem is to find
u ∈ XT(Ω), λ ∈ C so that for all v ∈ XT(Ω),∫

Ω

curlu · curlv − αu · v + θdivu divv dx = −λ
∫
Γ

u · vds, (3.4)

where Ω ⊆ R3 is a bounded domain with sufficiently regular boundary Γ = ∂Ω. Notice
that both sides of the equation correspond to bilinear forms, and the grad-div term in the
strong formulation (2.8) ensures that the left-hand side is coercive (see [11]). Let Th be a
triangulation of Ω, and let Ωh be the corresponding mesh with boundary ∂Ωh. The discrete
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modified Steklov-Maxwell problem is to find uh ∈ Vh and λh ∈ C such that for any vh ∈ Vh,∫
Ωh

curluh · curlvh − αuh · vh + θdivuh divvh dx = −λh

∫
∂Ωh

uh · vh ds. (3.5)

As in Section 3.1.4, we can set up a linear system and approximate the modified Steklov-
Eigenvalues, using the C++ mathematical library (FreeFem++) and MATLAB.

Let us explicitly describe the finite element matrices. Suppose B = {φ1, . . . ,φN } is the
finite element basis of Vh. We define four matrices, A1, A2, A3, and B, corresponding to the
four terms appearing in (3.5). The matrices are given by

(A1)ij =
∫

Ωh

curlφi · curlφj dx, (A2)ij =
∫

Ωh

φi · φj dx,

(A3)ij =
∫

Ωh

divφi divφj dx, (B)ij =
∫

Γh

φi · φj ds

for every (i, j) ∈ {1, . . . , N}2. Each of these matrices is symmetric by the commutativity
of the dot product. Furthermore, the matrices are all real and sparse (have relatively few
non-zero entries), stemming from the finite element method. Letting A = A1 − αA2 + θA3,
we approximate the eigenvalues of (3.4) by solving the generalized eigenvalue problem Ac =
−λhBc for λh ∈ C and c ∈ CN . Note that the vector c is the coordinate vector of our
approximate eigenfunction with respect to the basis B.

We let h denote the mesh size of Ωh, quantifying the maximum size of the edges making
up the approximate domain. As h approaches zero, our partition of Ω becomes increasingly
finer, and Ωh ultimately becomes Ω. For our approximations to be useful, we need evidence
that λh approaches a true eigenvalue λ as h vanishes. If limh→0 λh = λ, we say λh converges
to λ as h tends to zero. Section 3.3 illustrates convergence for the Steklov-Laplace problem
and the modified Steklov-Maxwell problem.

We conclude this section with a comment on the space Vh. We say that our method is
conforming if Vh is a subspace of XT(Ω), otherwise it is nonconforming [2]. In our case, we
must explicitly tell FreeFem++ that uh ·ν = 0 on Γ to get a conforming method. The finite
element matrices (the Ai and B) are drastically different if we choose conforming finite
elements rather than nonconforming. The main contribution of this work is showing that
conforming methods are critical for developing the numerical framework of the modified
Steklov-Maxwell problem.

3.2 Numerically Determining the Eigenvalues

This section is adapted from Trefethen & Bau [16].
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3.2.1 Shift-Invert Method

Before discussing the main results of this thesis, we briefly describe methods to compute
the eigenvalues of the finite element matrices. This section completes the theory behind
approximating solutions to eigenvalue problems with the finite element method.

Let A,B ∈ Cn×n. A generalized eigenvalue problem is to find non-zero x ∈ Cn and
λ ∈ C such that Ax = λBx. Rearranging, this becomes (A − λB)x = 0. Since x must
be non-zero, A − λB is singular, so determining λ amounts to finding the roots of the
polynomial p(λ) = det(A−Bλ). However, exact root finding is no simple task as solvability
of the roots in terms of radicals is not guaranteed when deg(p) ≥ 5. We instead use iterative
methods involving matrices to determine the eigenvalues numerically.

Both the EigenValue function in FreeFem++ and eigs function in MATLAB make use
of the ARPACK software [13]. These functions input two matrices and return the eigenvalues
and eigenvectors. For example, we may input A1 − αA2 + θA3 and B, and the functions
output the solutions to the generalized eigenvalue problem

(A1 − αA2 + θA3)c = −λBc.

In MATLAB, these are returned in two separate matrices, whereas in FreeFem++ they are
organized into a list.

Since the finite element matrices are sparse, singular, and symmetric, the algorithms use
the shift-invert method in ARPACK. We define a shift σ ∈ R and compute the eigenvalues
near σ by solving the eigenvalue problem

(A− σB)−1Bx = νx, (3.6)

where ν = 1/(λ− σ). Once we know σ and ν, we can simply solve for λ. Section 4.5 of [13]
details this method extensively. With this setup, we must now compute the eigenvalues.

We compute the eigenvalues with iterative methods, as non-iterative approaches often
require an immense number of operations. Numerous iterative methods may be employed
depending on the problem at hand. Iterative methods are particularly useful for prob-
lems involving sparse matrices, as significantly fewer operations are required to compute
the eigenvalues. Furthermore, iterative solvers are especially good for computing larger
magnitude eigenvalues, so the shift-invert method above provides a link to determining
small-magnitude eigenvalues with high accuracy.

3.2.2 Power Iteration

The power method is one of the simplest iterative methods to determine eigenvalues. Sup-
pose A ∈ Rn×n has real eigenvalues λ1 > λ2 ≥ . . . ≥ λn. Let {x1, . . . , xn} be a set of
orthonormal eigenvectors of A such that Axi = λixi for all i = 1, . . . , n. Suppose v0 ∈ Rn
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is an arbitrary vector of unit norm. The power method simply iterates using powers: at the
k-th step, we set vk = Avk−1/∥Avk−1∥, where k ∈ N and ∥·∥ is the Euclidean norm. The
claim is that vk converges to x1. To see this, expand v0 in terms of the eigenvectors as

v0 = a1x1 + a2x2 + . . .+ anxn

for some a1, . . . , an ∈ R. Now, multiply by Ak on both sides of the above equation to get

vk = ckA
kv0 = ck(a1A

kx1 + . . .+ anA
kxn)

= ck(a1λ
k
1x1 + . . .+ anλ

k
nxn)

= ckλ
k
1

(
a1x1 + a2

(
λ2
λ1

)k

x2 + . . .+ an

(
λn

λ1

)k

xn

)

for some constant ck > 0. Since λ1 > λj for each j = 1, . . . , n, as k grows we isolate
the eigenvector corresponding to the eigenvalue of largest magnitude, assumed to be λ1 in
the above. That is, the first eigenvalue dominates the other eigenvalues. This is the power
method.

The power method is a simple but ineffective way to determine the eigenvalues in prac-
tice. For instance, it can isolate only the eigenvector corresponding to the eigenvalue of the
largest magnitude, which is very dependent on the other eigenvalues. Numerically, if the two
largest eigenvalues are very close, then the power method is insufficient as the algorithm
becomes very slow: one eigenvalue must be distinctly larger than the others. We instead use
the Arnoldi process that FreeFem++ and MATLAB are based on.

3.2.3 Arnoldi Iteration

We begin with some basic definitions. We call a matrix M ∈ Rn×n unitary if

MM∗ = M∗M = I,

where I denotes the identity matrix and M∗ the conjugate transpose of M . We say M is
upper Hessenberg if (M)ij = 0 whenever i > j + 1. That is, all the entries of M below the
first sub-diagonal are zero.

For the Arnoldi process, we assume A ̸= A∗ and that there are n×n matrices U and H,
where U is unitary and H is upper Hessenberg, such that A = UHU∗. Let u1, . . . , un denote
the columns of U and let Ũm = [u1|u2| . . . |um] for some fixed 1 ≤ m < n. Furthermore, let
H̃m denote the upper left (m+ 1) ×m block of H. Then AÛm = Ûm+1Ĥm. In particular, if
hij = (H)ij , then

Aum =
m+1∑
k=1

hkmqk,

so we get a recurrence relation for qm+1.
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The Arnoldi iteration naturally follows from the above recurrence relation. We begin
with some arbitrary unit vector u1 ∈ Rn. We iterate through the integers k ≥ 2. First
set v = Auk, where k ≥ 2. Now for each l ∈ N satisfying 1 ≤ l ≤ k, set hjk = u∗

jv, and
let v′ = v−hjk. Finally, take hk+1,k = ∥v′∥ and uk+1 = v′/hk+1,k. The result is a sequence of
orthonormal vectors u1, u2, . . . , um and an upper Hessenberg matrix Hm whose ij-th entry
is hij . Furthermore, Hm = U∗

mAUm, where the l-th column of Um is ul, for l = 1, . . . ,m. It
turns out that the eigenvalues of Hm are excellent approximations to the eigenvalues of A.
The simple structure of Hm means that its eigenvalues can be computed efficiently. We
refer the reader to Trefethen & Bau [16] for an in-depth study of these algorithms. Overall,
the Arnoldi method is more reliable than the power method as it does not depend on one
eigenvalue dominating the others.

3.2.4 Condition Numbers

Each of the iterative algorithms we use accumulates errors at each step, as computers use
floating-point arithmetic. The idea of convergence described in Section 3.1.5 is essential, but
we should also characterize how sensitive linear systems are to small perturbations. This is
the idea of conditioning.

Consider the linear equation Ax = b, where A ∈ Cn×n and x, b ∈ Cn. We wish to
characterize how sensitive x is to small changes in b and vice versa. The condition number
of a matrix is one way of characterizing this. We define the condition number of A as
κ(A) = ∥A∥2

∥∥A−1∥∥
2, where κ(A) = ∞ if A is not invertible. Here, ∥A∥2 is the matrix

2-norm, defined by
∥A∥2 = sup

x∈Cn

x ̸=0

∥Ax∥
∥x∥

,

where ∥·∥ is the Euclidean norm for vectors. The matrix A is called well-conditioned if κ(A)
is small, and ill-conditioned otherwise. A small condition number corresponds to small
perturbations to x or b having little impact on the solutions to the equation Ax = b.
Likewise, a large condition number signifies that small changes lead to considerable changes
in the solutions. In practice, the condition number can be approximated by the quotient of
the largest eigenvalue of A with the smallest eigenvalue. See [16] for a deeper analysis.

The power and Arnoldi iterations both involve matrix multiplication with A, so deter-
mining the condition numbers is critical for our analysis. However, we have not stated a
precise definition of what it means for a condition number to be “small” or “large,” as this
depends on the specific problem. We illustrate this idea in the next section by comparing
condition numbers for matrices built with two different procedures.
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3.3 Numerical Results

In this section, all computations are done on the unit disk in R2 for the Steklov-Laplace
problem and the unit cube (0, 1)3 in R3 for the modified Steklov-Maxwell problem.

3.3.1 Results for the Steklov-Laplace Problem

We begin this section with a brief discussion of the convergence of the finite element method
for the Steklov-Laplace problem. Recall, the weak formulation of this problem is to find
u ∈ H1(Ω) and σ ∈ C such that∫

Ω

gradu · gradv dx = σ

∫
Γ

uvds (3.7)

for all v ∈ H1(Ω). Thus, the discrete formulation involves two matrices, corresponding to
each term of the weak problem. The key question is whether the eigenvalues computed with
the finite element matrices converge to the true eigenvalues.

Although we described the finite element method for vectorial problems, the finite el-
ement approximation of scalar functions is identical. Let the mesh size h > 0 be given.
Suppose Vh ⊆ H1(Ω) is the finite element space and Ωh the mesh with boundary Γh. Let
{ϕ1, . . . ϕm} be the standard basis of Vh. We define matrices A and B by

(A)ij =
∫

Ωh

gradϕi · gradϕj dx, (B)ij =
∫

Γh

ϕi ϕj ds.

Approximating the Steklov-Laplace eigenvalues/eigenvectors thus amounts to solving for
the eigenvalues σ ∈ C and eigenvectors c ∈ Cm of the linear equation Ac = σBc.

For the unit disk, let σ(k) denote the true k-th eigenvalue of (3.7) and σ(k)
h the approxima-

tion to it. By [5], we know that the true eigenvalues on the unit disk are σn = n for all non-
negative integers n. Furthermore, each eigenvalue is of multiplicity two, except for σ0 which
occurs once. According to Boffi [1], the error should behave like |σ(k) −σ(k)

h | ≤ Chm for some
constant C > 0 and some positive integer m. We have log

(
|σ(k) − σ

(k)
h |
)

≤ log(C)+m log(h)
by taking the logarithm on both sides of the inequality. Thus, the convergence rate m can
be approximated by the slopes of the best-fit lines through error data, assuming the log-log
data behaves linearly. Figure 3.3 exemplifies this linear behaviour. Note that the figure has
the relative error on the y-axis, which affects C but not m. The relative error illustrates the
convergence more effectively as the lines are easily distinguished in the figure.

Figure 3.3 includes best-fit lines demonstrating the linear behaviour of the error. The
slopes of these lines are all approximately m = 2, hence the convergence is quadratic in
the mesh size. Note that m is the worst-case convergence rate. The figures in the following
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subsections illustrate this as the slopes of the best-fit lines become steeper and less linear
as the mesh becomes very fine.

Figure 3.3: Log-log plot of relative error for the Steklov-Laplace problem on the unit disk.
The true eigenvalues are denoted by σk, the approximations by σ∗

k, and the mesh size by h.
The errors are decreasing at least quadratically as the mesh size decreases.

3.3.2 Nonconforming Method

In the nonconforming method, Vh is chosen such that Vh ̸⊆ XT(Ω). To implement this in
code, we do not include the condition that ν · uh = 0 on the boundary of the cube. Recall,
the condition that uh is tangential is part of the definition of our solution space (2.7)
from Section 2.5, XT(Ω) = H(curl,Ω) ∩H0(div,Ω). Since the vectorial Sobolev space (2.6),
denoted byH0(div,Ω), includes only tangential vector fields,XT(Ω) must too. We claim that
the nonconforming method fundamentally fails for the modified Steklov-Maxwell problem,
despite involving well-conditioned matrices (for α ̸= 0) and evidence of convergence.

Ferraresso, Lamberti, & Stratis in [4] derive the exact eigenvalues on the unit ball in R3

using the theory of spherical harmonics. For θ = 1, the spectrum consists of two sequences
of eigenvalues decreasing asymptotically along the line y = x. Figure 3.4 suggests that the
nonconforming method fails to approximate the eigenvalues, as the computed eigenvalues
vary immensely from the exact eigenvalues. In the figure, the approximations (in blue) stay
near zero, whereas the true eigenvalues (in green and red) are decaying as the eigenvalue
number k increases. That is, our approximations are inaccurate and we must modify our
approach. Note that the computed eigenvalues in Figure 3.4 were generated on as fine a
mesh as possible (given limited computational power and memory).
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We conclude this section with a warning about convergence tests and conditioning.
Consider Figure 3.5. This is a convergence plot for the nonconforming method with α =
θ = 1, where we compare our best approximation to approximations on coarser meshes. The
linear behaviour of the data in this plot illustrates that the approximation error decreases
as h tends to zero. Furthermore, the slopes of the best-fit lines are all approximately equal
to two, except for the 1st and 5th eigenvalue, so the convergence is quadratic. As previously
discussed, Figure 3.4 reveals that the eigenvalues are converging to incorrect numbers despite
apparent convergence: while the approximations appear to converge, they are inaccurate.

Lastly, we examine the conditioning of the linear system associated with the noncon-
forming method. Table 3.1 illustrates that, except for A2, the condition numbers of the
matrices defined in Section 3.1.5 are large (Inf denotes numbers too big to be represented
in MATLAB). The last column of the table is relevant since approximating the eigenvalues
of the weak modified Steklov-Maxwell problem amounts to solving the generalized eigen-
value problem Ac = −λBc for λ ∈ C, c ∈ Cn, where A = (A1 − αA2 + θA3). The last
column of Table 3.1 demonstrates that A is well-conditioned for α ̸= 0, as the condition
number of A is small. Since A1 and A3 have large condition numbers, A2 makes the system
well-conditioned. Hence, a well-conditioned system does not imply accurate results.

Figure 3.4: The first 50 eigenvalues of the first and second families for the ball compared
with the computed eigenvalues for α = θ = 1.

Matrix A1 A2 A3 B A1 −A2 +A3
Nonconforming Method 1.54e17 50.04 Inf Inf 6.04e7

Conforming Method 5.00e47 7.80e35 1.20e51 Inf 4.18e33

Table 3.1: Condition numbers of the finite element matrices defined in Section 3.1.5.
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Figure 3.5: Log-log plot of relative error for α = θ = 1 with a nonconforming method. The
true k-th eigenvalue is denoted as λk, the approximation by λ∗

k, and the mesh size by h.

3.3.3 Conforming Method

In the conforming method, we take Vh to be a proper subspace of XT(Ω). Specifically, we
search a set smaller than XT(Ω) for a solution and increase the size of this set from within
XT(Ω) as h → 0. To implement this in our code, we manually set uh to be tangential:
uh · ν = 0 on Γh.

Given the failure of the nonconforming method, our first question should be whether our
eigenvalues are accurate. One way to do this is to compare the asymptotic behaviour of the
eigenvalues for different domains [14]. Since we do not have exact solutions to the modified
Steklov-Maxwell problem on the unit cube, we compare the asymptotic behaviour of our
approximations to the known asymptotics for the unit ball. Recall that the spectrum for the
unit ball consists of two families of eigenvalues. If θ = 1, then each family asymptotically
decays along the line y = x (see the columns of Table 3.2). Notice that the eigenvalues
for the ball and sphere are very similar in magnitude, so we have some confirmation that
the conforming method is more accurate than the nonconforming. We have also verified
the conforming method’s accuracy by numerically validating Theorem 3.10 from [11]. This
result gives necessary and sufficient conditions for when problem (2.8) has a zero eigenvalue.
With the question of accuracy addressed, we may now determine if the matrices associated
with the conforming method are well-conditioned.

Consider Table 3.1. The condition numbers for the finite element matrices are consider-
ably higher than in the nonconforming case. With large condition numbers, we may expect
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the matrices and their linear combinations to be ill-conditioned. However, our computa-
tions demonstrate consistency among eigenvalues of repeated multiplicity. For example, the
first eigenvalue for α = θ = 1 is λ1 = −1.6521. MATLAB displays this eigenvalue three
times, each occurrence agreeing to twelve decimal places (indicating that λ1 is of multiplic-
ity three). From Section 3.2, we know that iterative methods compute the eigenvalues; each
occurrence of λ1 in the outputted values corresponds to a new iteration. We expect errors
to accumulate in each iteration, and large condition numbers signify that the matrices in-
volved are sensitive to these errors. Since the three occurrences of λ1 agree to twelve decimal
places, the matrices may not be as poorly conditioned as suggested. Thus, the conforming
method appears to be consistent.

Finally, we must verify that our approximations converge to the true eigenvalues as the
mesh size vanishes. Since we do not know the exact eigenvalues on the cube, we first take
as small a mesh size as possible, say hT , and compute the approximate eigenvalues λhT

for the mesh ΩhT
. These approximations act as our true eigenvalues since we do not know

the exact eigenvalues on the cube. Next, we compute the eigenvalues for various h > hT ,
denoted λh, and compare these approximations to the λhT

. Table 3.3 and Figure 3.6 provide
evidence that |λh − λT | ≤ Ch2 for some C > 0: the eigenvalues converge quadratically as
the mesh size decreases. We know (from Section 3.3.1) that the slopes of the best-fit lines
capture how quickly the eigenvalues converge. Thus, Table 3.3 signals that the convergence is
quadratic. Note that the table has some entries that are below two. For instance, λ10 with the
parameters α = 1, θ = 0.1 seems to have a convergence rate of 1.31. However, Figure 3.6(c)
shows that the slope steepens for a smaller mesh size h (to the left of log10(h) = −1.1). The
slope of this part is approximately two, and so we still have quadratic convergence for λ10.
This behaviour is also seen in the other plots included in Figure 3.6.

In summary, we have provided evidence of accuracy, consistency, and convergence of the
conforming method. Our results indicate that the conforming method is the appropriate
approach to computing solutions to the modified Steklov-Maxwell eigenvalue problem using
finite elements. More specifically, the failure of the nonconforming method suggests that
the tangential boundary condition ν · uh = 0 is necessary for our computations to have
meaning.

Eigenvalue λ1 λ2 λ3 λ4 λ5
Ball (Family 1) -1.38 -2.63 -3.73 -4.79 -5.82
Ball (Family 2) -1.79 -2.85 -3.89 -4.91 -5.92

Cube -1.65 -2.30 -2.70 -4.32 -4.43

Table 3.2: Eigenvalues for the ball compared with eigenvalues on the cube for α = θ = 1.
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Eigenvalue λ1 λ5 λ10 λ15 λ20 λ25
α = 0.1, θ = 0.1 2.18 2.29 1.45 2.21 1.66 2.01
α = 0.1, θ = 1 2.34 2.37 2.37 2.24 2.31 2.36
α = 1, θ = 0.1 2.38 2.32 1.31 2.41 1.65 1.96
α = 1, θ = 1 2.34 2.37 2.37 2.25 2.31 2.36
α = 5, θ = 5 2.39 2.31 2.04 2.37 2.16 2.29
α = 10, θ = 10 2.38 2.31 1.87 2.53 2.03 2.13

Table 3.3: Slopes of the best-fit lines corresponding to convergence data. The computed
slopes demonstrate quadratic convergence in each case. The first four rows correspond to
the data displayed in Figure 3.6.

(a) α = 0.1, θ = 0.1. (b) α = 0.1, θ = 1.

(c) α = 1, θ = 0.1. (d) α = 1, θ = 1.

Figure 3.6: Log-log plots of relative error for different parameters. The true k-th eigenvalue
is denoted as λk, the approximation by λ∗

k, and the mesh size by h.
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Chapter 4

Conclusion

We have established a framework for studying the modified Steklov-Maxwell eigenvalue
problem with the finite element method. Our study began with the Steklov eigenvalue
problem for the Laplacian. As there is extensive literature on this problem, we wish to un-
derstand vectorial analogs of the problem. One such vectorial question involves the curl-curl
operator. We have noted the challenges of formulating a Steklov problem for this opera-
tor, motivating us to study Lamberti & Stratis’s [11] modified Steklov-Maxwell eigenvalue
problem. The theoretical framework of the problem and various key results, as described
in [4] and [11], were explored in Chapter 2. However, as we are not aware of any numeri-
cal studies of the problem, we developed a numerical framework to examine the modified
Steklov-Maxwell problem.

We have considered two methods for approximating the eigenvalues of the modified
problem using finite elements. The first approach is nonconforming, so the finite element
space is not a subspace of XT(Ω). The primary concern with this method is that the exact
eigenvalues on the unit ball do not agree with our approximations. Our second method is
conforming: we look for solutions in a proper subspace of XT(Ω). This approach delivers
significantly better results. For instance, we have found considerable evidence supporting
the convergence of each eigenvalue, regardless of our choice of parameters. Furthermore, the
eigenvalue asymptotics on the unit cube seem to agree with the unit ball asymptotics in [4].
The domain invariance of eigenvalue asymptotics is a common characteristic of eigenvalue
problems [14], further indicating that the conforming method is the correct approach to
numerically studying the modified Steklov-Maxwell problem.

The first inquiry to address in future studies would be to set up a method to approxi-
mate the modified Steklov-Maxwell eigenvalues on non-rectangular domains. Since the exact
eigenvalues on the unit ball are known, we should first address this case. Our original issue
with studying the ball is that there is no direct way to implement the tangential bound-
ary condition in FreeFem++. However, we may be able to force the condition by adding a
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penalty term. We expect the penalty term to be of the form

β

∫
Γ

(u · n)(v · n)ds, (4.1)

where u,v are in the finite element space, n is the outward unit normal to Γ, and β > 0.
Suppose we add (4.1) to the left-hand side of the weak formulation (3.4) and take β to
be very large. Then we expect u · n and v · n to become small on Γ so that the equation
is balanced. Further experiments are needed to analyze and adjust this method. If this
procedure succeeds, we can repeat the convergence tests demonstrated in Section 3.3 for
the ball and compare the approximations to the known eigenvalues.

Another question to be further studied is the relation of the modified Steklov-Maxwell
problem to the Steklov problem for the curl-curl operator. Given the numerical framework
provided in this thesis, we can now study the eigenvalues of (3.4) as α and θ vanish. The
problem seemingly approaches the curl-curl problem, but it is not immediately clear that
the Steklov-Maxwell eigenvalues tend to the Steklov eigenvalues of the curl-curl operator.
Namely, we have provided evidence that if λ(h, α, θ) is an approximation on a mesh of size
h to an eigenvalue λ(α, θ) of (3.4), then

lim
h→0

λ(h, α, θ) = λ(α, θ).

However, we do not know that

lim
(α,θ)→(0,0)

λ(h, α, θ), lim
(α,θ)→(0,0)

λ(α, θ)

approximate or converge to Steklov eigenvalues of the curl-curl operator. To formulate a
well-defined problem for this operator, we must first understand the convergence behaviours
as the parameters vanish.
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