
MATH-GA 2310 Topology I Lecture Notes

Lecturer: Valentino Tosatti Grayson Davis

NYU Courant grayson.davis@nyu.edu

These are lecture notes from a one-semester introductory graduate topology course offered at NYU
Courant in the Fall 2024 semester taught by Valentino Tosatti. I may have omitted some proofs
done in lecture, but I also occasionally add more detail to some sections, as in the discussion of the
Baire category theorem. Some exercises are from the course and others from me, though I became
lazy and eventually stopped adding exercises. Perhaps one day I will amend this. There may be
typos!

Lecture 1: Introduction, Metric spaces

We begin by studying the topology of Rn, the Euclidean space of n dimensions. Define

Rn := {(x1, . . . , xn) : x1, . . . , xn ∈ R}.

We know that Rn is a vector space, x+ y, λx ∈ Rn given x, y ∈ Rn and λ ∈ R. Here, addition and
scalar multiplication works component-wise. We can also equip Rn with the inner product

⟨x, y⟩ =
n∑

j=1

xjyj ,

so that it is an inner product space (in fact, Rn is a Hilbert space). The inner product induces a
norm,

∥x∥2 := ⟨x, x⟩ =
n∑

j=1

x2j .

Since ∥·∥ is a norm, we have that ∥x∥ = 0 if and only if x = 0, the origin in Rn. Geometrically, we
can interpret the quantity ∥x− y∥ as the length of the line segment joining x and y - the distance
between x and y (though we have not yet shown the line segment minimizes this distance).

One of the most fundamental inequalities in analysis is the Cauchy-Schwarz inequality.

Theorem 1 (Cauchy-Schwarz). For any x, y ∈ Rn, |⟨x, y⟩| ≤ ∥x∥∥y∥.

Proof. We have

0 ≤ 1

2

n∑
i,j=1

(xiyj − xjyi)
2 =

n∑
i,j=1

x2i y
2
j −

n∑
i,j=1

xiyixjyj = ∥x∥2∥y∥2 − (⟨x, y⟩)2.

□

There are various other proofs for Cauchy-Schwarz. One such proof is outlined in the exercises for
this lecture.

Corollary (Triangle Inequality). For any x, y ∈ Rn, we have ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

Proof. This is an immediate consequence of Cauchy-Schwarz by simply expanding out ⟨x+ y, x+ y⟩.
□
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As an aside discussion, let us examine the shortest path between two points x, y ∈ Rn. We define
a curve in Rn as γ : [a, b] → Rn where each component γj is C1. The length of γ is defined as

L(γ) =

∫ b

a

∥∥γ′(t)∥∥ dt.

Proposition 1. Let γ : [a, b] → Rn be a curve and let x = γ(a), y = γ(b). Then L(γ) ≥ ∥x− y∥.

Proof. We may assume without loss that x ̸= y. Let

v =
y − x

∥y − x∥
.

Then ∥v∥ = 1, and

∥x− y∥ = ⟨y − x, v⟩ = ⟨γ(b)− γ(a), v⟩ = ⟨
∫ b

a
γ′(t) dt, v⟩

=

∫ b

a
⟨γ′(t), v⟩ dt

≤
∣∣∣∣∫ b

a
⟨γ′(t), v⟩ dt

∣∣∣∣
≤
∫ b

a

∥∥γ′(t)∥∥ dt

= L(γ),

using the fundamental theorem of calculus and Cauchy-Schwarz. □

In particular, we are justified in thinking of ∥x− y∥ as the distance between x and y. If we generalize
the notion of distance, we end up with metric spaces.

A metric space is a set X and a function d : X ×X → [0,∞). satisfying

(i) (Symmetry) d(x, y) = d(y, x) for all x, y ∈ X,

(ii) (Non-negativity) d(x, y) ≥ 0 for all x, y ∈ X, with equality holding if and only if y = x,

(iii) (Triangle Inequality) d(x, y) ≤ d(x, z) + d(y, z) for all x, y, z ∈ X.

As previously suggested, Rn with the distance d(x, y) := ∥x− y∥ for each x, y ∈ Rn is a metric
space. We provide some more important examples.

Example (Discrete metric). Let X be any set. Define a metric

d(x, y) =

{
0 x = y,

1 otherwise.

This is the discrete metric on a set X. ⋄
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Example (p-distance in finite dimensions). Given x, y ∈ Rn, p ≥ 1, define

dp(x, y) =

(
n∑

i=1

|xi − yi|p
) 1

p

.

It is not trivial to show this is a metric. Specifically, the triangle inequality is not trivial, and
requires the Minkowski inequality with the counting measure. ⋄

Example (sup-metric). For p = ∞, we may define the sup-metric (or L∞-distance) as

d∞(x, y) = max
i=1,...,n

|xi − yi|

for any x, y ∈ Rn. ⋄

Example (General Lp spaces). Let (X,Σ, µ) be a measure space. Define

Lp(X) := {f : X → R : f is measurable,

∫
X
|f |p < ∞}/̃,

where fg̃ if and only if f = g almost everywhere with respect to µ. Define a metric

dp(f, g) =

(∫
X
|f − g|p

) 1
p

.

⋄

Example (Induced metric). Let (X, d) be a metric space and Y ⊆ X. Then d|Y : Y ×Y → [0,∞)
gives the induced metric on Y . ⋄

Lecture 1 Exercises

1. Prove Cauchy-Schwarz by following the proceeding steps:

(a) Consider any λ ∈ R fixed. Use the properties of the inner product to expand ∥x+ λy∥2.

(b) Note that this is a quadratic polynomial in λ. Examine it’s discriminant to prove Cauchy-
Schwarz.

This method works for more general Hilbert spaces.

2. Prove that the inner product and norm defined in this lecture satisfy the axioms of an inner
product and norm.

3. Let X be a set and d1, d2 two metrics on X. Determine d1 + d2 and max(d1, d2) are metrics
on X.

4. Let γ : [a, b] → Rn be a smooth curve with x := γ(a) ̸= γ(b) =: y. Show that if its length L(γ)
is equal to ∥x− y∥, then γ parametrizes the line segment joining x and y.

5. Let X := (0,∞). Consider ρ : X ×X → (0∞) defined by

ρ(x, y) :=

∣∣∣∣1x − 1

y

∣∣∣∣
for all x, y ∈ X. Show that ρ is a metric on X.
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Lecture 2: Metric spaces ctd. (continuity, open sets), Topological spaces

On each metric space, we can define the notion of “metric balls”. Let (X, d) be a metric space.
Given x ∈ X, r > 0 the open ball of radius r with center x is defined as

Br(x) = {y ∈ X : d(x, y) < r}.

This definition agrees with our usual notion of disks in R2. Likewise, a closed ball of radius r
around x is

Br(x) = {y ∈ X : d(x, y) ≤ r}.

We can use these balls to redefine continuity of a function on a metric space. Let (X, dX), (Y, dY )
be metric spaces. A function f : X → Y is called continuous at x ∈ X if for every ϵ > 0 there
exists δx > 0 such that dY (f(x), f(y)) < ϵ whenever dX(x, y) < δx. In other words, f is continuous
at x if for every ϵ > 0 there is δx > 0 such that f(Bδx(x)) ⊆ Bϵ(f(x)).

Example. If dX and dY are both the discrete metric, then every f is continuous. ⋄

The notion of “open balls” lets us define a more general notion of “openness”. We call a set U ⊆ X
in the metric space (X, d) open if for every x ∈ U there exists r > 0 such that Br(x) ⊆ U . More
generally, if A ⊆ X is every set and some open ball around x is contained in A, we call x an interior
point of A. The set of all interior points of A is denoted by A◦. Thus, an open set is any set
satisfying U = U◦. By convention, we take ∅ to be open.

Example. The open balls Br(x) in a metric space are open. Indeed, let y ∈ Br(x) and take
s = r − d(x, y). Then Bs(y) ⊆ Br(x), as if z ∈ Bs(y),

d(x, z) ≤ d(x, y) + d(y, z) < d(x, y) + s = r.

⋄

Proposition 2 (Properties of Open Sets). Let (X, d) be a metric space. Then

(i) ∅ and X are open,

(ii) if U1, . . . , UN are open, then
⋂N

i=1 Ui is open,

(iii) if {Uα}α∈I is any collection of open sets, then
⋃

α∈I Uα is open.

Proof. (i) is trivial.

For (ii), let x ∈
⋂N

i=1 Ui. Then there are ri > 0 such that Bri(x) ⊆ Ui for each i = 1, . . . , N . Let

r = min(r1, . . . , rN ). Then Br(x) ⊆
⋂N

i=1 Ui.

For (iii), let x ∈
⋃

α∈I Uα. Then there exists β ∈ I such that x ∈ Uβ. Since Uβ is open, Br(x) ⊆
Uβ ⊆

⋃
α∈I Uα for some r > 0. □

We can also rephrase continuity in terms of open sets.

Proposition 3. Let (X, dX), (Y, dY ) be metric spaces. Then f : X → Y is continuous if and only
if f−1(U) is open in X for every open set U ⊆ Y .
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Proof. Let f be continuous and U ⊆ Y open. Let x ∈ f−1(U). Then there exists r > 0 such that
Br(f(x)) ⊆ U . Since f is continuous, there exists δ > 0 such that f(Bδ(x)) ⊆ Br(f(x)) ⊆ U . Thus,
Bδ(x) ⊆ f−1(U).

Conversely, let ϵ > 0 and x ∈ X be given. We know thatBϵ(f(x)) ⊆ Y is open, so f−1(Bϵ(f(x))) ⊆ X
is open and contains x. Let δ > 0 be such thatBδ(x) ⊆ f−1(Bϵ(f(x))). Then f(Bδ(x)) ⊆ Bϵ(f(x)).

□

This equivalent definition of continuity seems quite general, as it does not explicitly involve the
metric on X. At some point in the 20th century, people saw this proposition and realized they
could abstract it further. This is the start of topology.

A topological space is a pair (X, T ) consisting of a set X and a topology T ⊆ P(X), which is a
collection of subsets of X satisfying

(i) ∅ ∈ T , X ∈ T ,

(ii) if U1, . . . , UN ∈ T , then
⋂N

i=1 Ui ∈ T ,

(iii) for any collection {Uα}α∈T ⊆ T , it follows that
⋃

α∈I Uα ∈ T .

The elements of T are called open sets. Notice these are exactly the properties we showed in
Proposition 2.

Example. If (X, d) is a metric space, then

T = {U ⊆ X : U is open with respect to the previous definition of open}

is the induced metric topology on X. ⋄

Example. If X is any set, then T = P(X) is called the discrete topology on X - every set in X
is open. ⋄

Example. Let X be any set and T = {∅, X}. We call T the indiscrete (trivial) topology on X. ⋄

Example. Let X = Q and p be a prime number. We define the p-adic topology. We define
∥·∥p : Q → R as follows. Let ∥0∥p = 0. If q ∈ Q, then factor q as q = pk a

b where a, b ∈ Z are

not divisible by q and k ∈ Z. Define ∥q∥ = p−n. The induced metric topology is called the p-adic
topology. ⋄

Lecture 2 Exercises

1. Let X be a set and d the discrete metric on X. Show that the induced metric topology on X
is the discrete topology.

2. Let X be a set.

(a) Let Tf be all subsets U ⊆ X such that X\U is either finite or all of X. Show that Tf is
a topology on X. We call this topology the finite complement topology.

(b) Is the collection

T∞ = {U ⊆ X : U\Xis infinite or empty or all of X}

a topology on X?
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Lecture 3: Closed sets, Continuity in topological spaces

Last lecture, we defined open sets in a topological space to be the elements of the topology. Another
class of important sets in a topological space are the closed sets. We call a set F ⊆ X closed with
respect to the topology T on X if F c ∈ T . That is, F is closed if and only if F c is open.

We can characterize closed sets in different ways. Let A be a set. We call a point p ∈ A a limit
point of A if for any open set U ⊆ X containing p there exists a point q ∈ A ∩ U with q ̸= p.
Intuitively, p can be well-approximated by elements of A. We denote the limit points of A by A′.

Example. Given x ∈ Rn, r > 0, any point y ∈ Rd satisfying |x− y| = r is a limit point of
the open ball Br(x). To see this, it suffices to show that any open ball around y has non-trivial
intersection with Br(x). Let ϵ > 0 be the supremum of all ϵ∗ satisfying Bϵ∗(y) ∩ Br(x) = ∅. If
z ∈ Bϵ(y)∩Br(x), then there exists some δ > 0 such that Bδ(z) ⊆ Bϵ(y)∩Br(x). Let L be the line
between y and z, parametrized by sy + (1 − s)z, s ∈ [0, 1]. Choose w ∈ L such that |w − z| = δ.
Since y, z, w are co-linear, we have

|y − z| = |y − w|+ |w − z|,

and hence |y − w| < ϵ − δ < ϵ, a contradiction. Hence, Bϵ(y) ∩ Br(x) is empty. Choose a point z
such that z lies on the line segment between x and y and |y − z| = ϵ. Then |x− z| = r − ϵ < r.
Hence, we may choose a neighbourhood Bδ(z) ⊆ Br(z). Now take |w − z| = δ/2 where w lies on
the given line segment. Then |w − y| = ϵ− δ/2 < ϵ, a contradiction. Thus, no such ϵ can exist, so
the circle bounding each disk consists of limit points of a disk. ⋄

Proposition 4. Let X be a topological space and A ⊆ X closed. Then A contains all its limit
points.

Proof. Let x ∈ A′. Assume, by way of contradiction, that x /∈ A. Then Ac is an open set containing
x that intersects trivially with A, a contradiction. □

Note that a set can be open and closed at the same time, such as ∅ and X. Moreover, we can
completely characterize a topology by its closed sets.

We now define a more general notion of continuity. Let X and Y be topological spaces. A function
f : X → Y is called continuous if f−1(U) is open in X for every open set U in Y . If f is bijective
and f−1 continuous, we call f a homeomorphism and call X and Y homeomorphic. Essentially, X
and Y are topologically the same space. Observe that homeomorphism is an equivalence relation
on topological spaces.

Example. Let Bn := B1(0) ⊆ Rn and define a map f : Bn → Rn by f(x) = x/(1−∥x∥). Then f is
a well-defined continuous map. Define g : Rn → Bn by g(y) = y/(1+ ∥y∥). Then g is a well-defined
continuous map, and it is easy to check that g is the inverse of f . Hence, Bn is homeomorphic
to Rn. ⋄

Example (Stereographic Projection). Let Sn = {x ∈ Rn+1 : ∥x∥ = 1} with the induced Euclidean
topology. This is called the n-sphere. Let N = (0, . . . , 0, 1) ∈ Sn. For every P ∈ Sn\{N}, there
is a unique point, which we call f(P ), that intersects the hyperplane xn+1 = 0. This defines a
map f : Sn\{N} → Rn, called stereographic projection. This map is continuous and has continuous
inverse (see exercises). ⋄
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Example. Define f : [0, 1) → S1 by f(t) = (cos(2πt), sin(2πt)). Then f is continuous (the com-
ponents are continuous) and bijective. However, f is not a homeomorphism. For each x ∈ S1, we
can write x = (cos(θ), sin(θ)) for some unique θ ∈ [0, 2π). Then g(x) = θ/(2π) is the inverse of f ,
but g is not continuous. For instance, g−1([0, 1/2)) is not open in S1, since (1, 0) ∈ g−1([0, 1/2)) is
not an interior point. ⋄

Lecture 3 Exercises

1. Show that A = A ∪A′ for every set A in a topological space X.

2. Show that Br(x) is closed in a metric space (X, d). This justifies the name “closed ball”.

3. Show that Proposition 3 holds when we replace “open” with “closed”. In particular, show
that f : X → Y is continuous if and only if f−1(A) is closed for every A ⊆ Y closed.

4. Find the stereographic projection map and prove that it is a homeomorphism from Sn\{N}
to Rn.

7



Lecture 4: Basic definitions, Bases

We begin by stating some basic definitions in topological spaces.

Let X be a topological space and A ⊆ X a subset.

• We call A dense if A = X.

• The closure of A, denoted A, is the smallest closed set in X that contains A. That is,

A :=
⋂

A⊆B, B closed

B.

• The interior of A, denoted A◦, is

A◦ :=
⋃

U⊆A, U open

U.

• The boundary of A is ∂A := A\A◦.

Example. Q is dense in R. ⋄

Example. The closure and interior of [a, b) in the Euclidean topology is [a, b] and (a, b), respec-
tively. The boundary of [a, b) is {a, b}. ⋄

Example. ∂Q = R in the Euclidean topology. ⋄

Observe that ∂A is always closed, as it is the intersection of two closed sets.

Given a topological space X and two topologies T1, T2 on X, we say that T1 is finer that T2 if
T2 ⊆ T1. That is, every set in open set in (X, T2) is open in (X, T1) - there are fewer gaps in (X, T1)
compared to (X, T2). Since T2 ⊆ T1, we say that T2 is coarser than T1.
Example. Every topology is finer than the indiscrete topology and coarser than the discrete
topology. ⋄

Fix a topological space (X, T ) and a subcollection of open sets B = {Bα}α∈I ⊆ T . We call B a
basis for the topology T if for every x ∈ X and every open set U ∈ T containing x, there exists
Bα ∈ B such that x ∈ Bα ⊆ U .

Example. B = T is a basis, though this is not a particularly enlightening example. ⋄

Example. If (X, d) is a metric space, than the set of all open balls is a basis for the induced
metric topology, i.e.,

B = {Br(x) : x ∈ X, r > 0}

is a basis. ⋄

Example. Let X have the discrete topology. Then B = {{x} : x ∈ X} is a basis. ⋄

Example. Let X have the indiscrete topology. Then B = {X} is a basis. ⋄

Remark. Let B be a basis for the topological space (X, T ). Then every open set in X can be
written as a union of basis elements.
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Proof. Let U ⊆ X be open. For each x ∈ X, choose an open set Ux ∈ B such that x ∈ Ux ⊆ U .
Then U =

⋃
x∈U Ux. □

Our definition of continuity can also be framed in terms of bases. If we want to check if a function
f is continuous, we need to check the preimage under f of all open sets in Y - this can be a lot of
open sets! The next proposition says it suffices to just check that the preimage of basis elements
are open.

Proposition 5. Let f : X → Y be a mapping of topological spaces. Fix a basis B of Y . Then f
is continuous if and only if f−1(B) is open in X for every B ∈ B.

Proof. The “only if” direction is immediate. Let U ⊆ Y be open. Given x ∈ X, there exists Bx ∈
BB such that f(x) ∈ Bx ⊆ U . By assumption, Vx = f−1(Bx) is open in X, hence V =

⋃
x∈X Vx is

open in X. By construction, V = f−1(U). □

We note that there is an analogous result in measure theory for bases of a σ-algebra.

Given a set X and A a collection of subsets of X, we can define the topology generated by A. Let

TA :=
⋂

A⊆T
T ,

where T is a topology. Then TA is the smallest topology on X containing A. A basis for this
topology is

B := {U1 ∩ . . . ∩ UN : Ui ∈ A, N ∈ N}.

Lecture 4 Exercises

1. Let X be a topological space and A ⊆ X a subset.

(a) Show that ∂∂A ⊆ ∂A.

(b) Find an example where ∂∂A ̸= ∂A.

(c) Show that ∂∂∂A = ∂∂A.

2. Let (X, d) be a metric space. Show that the following are equivalent.

• For every x ∈ X and r > 0, we have Br(x) = Br(x).

• For every x ̸= y ∈ X and ϵ > 0, there is z ∈ X such that d(y, z) < ϵ and d(x, z) < d(x, y).

Find an example where Br(x) ̸= Br(x).

3. Let X be a topological space. We call a collection of closed sets C a base for the closed sets
if and only if {X\C : C ∈ C} is a basis of X. Show that the following are equivalent.

• C is a base for the closed sets of X.

• For every A ⊆ X closed and each point x /∈ A, there exists C ∈ C such that A ⊆ C
but x /∈ C.

•
⋂

C∈C C = ∅ and given C1, C2 ∈ C, we have that C1 ∪ C2 is the intersection of some
subfamily of C.
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Lecture 5: Operations on topological spaces

In this lecture, we begin our discussion of constructing new topological spaces from old ones. The
first item of discussion is the subspace topology. Let (X, T ) be a topological space and A ⊆ X a
subset. The subspace topology on A is

T |A := {U ∩A : U ∈ T }.

In other words, a set V ⊆ A is open in the subspace topology if and only if there exists an open set
U ⊆ X such that V = U ∩ A. We sometimes call V relatively open in A. An analogous statement
holds for closed sets.

Example. LetX = R with the Euclidean topology and A =
⋃

n∈N{
1
n} with the subspace topology.

Then the subspace topology on A is the discrete topology, as every singleton is open. However,
A ∪ {0} is no longer discrete with the subspace topology. ⋄

Theorem 2 (Universal Property for Subspaces). Let X be a topological space and A ⊆ X a
subspace. Given a topological space Y and a map f : Y → A, we have that f is continuous if and
only if ι ◦ f : Y → X is continuous, where ι : A ↪→ X is the inclusion map.

Proof. Given any U ⊆ X open, we have

(ι ◦ f)−1(U) = f−1(ι−1(U)) = f−1(U ∩A),

which is open by continuity of f .

Conversely, take V ⊆ A open and write V = U ∩A = ι−1(U) for some open set U ⊆ X. Then

f−1(V ) = f−1(ι−1(U)) = (ι ◦ f)−1(U)

is open. □

An immediate consequence is that the inclusion map is always continuous.

The next type of topological space we construct is the coproduct of a collection of topological spaces.
Let {Xα}α∈I be any collection of topological spaces. Then the coproduct of the Xα is the disjoint
union

X :=
∐
α∈I

Xα = {(x, α) : x ∈ Xα, α ∈ I}.

For each α ∈ I, there is a natural inclusion map ια : Xα → X. The coproduct topology is defined by
declaring that U ⊆ X is open if and only if ι−1

α (U ∩ ια(Xα)) is open in Xα for every α ∈ I. That
is, the intersection of U with every Xα is open in Xα.

Theorem 3 (Universal Property for Coproducts). Let {Xα}α∈I and Y be topological spaces and
let X be the coproduct topology on the disjoint union X of the Xα. Then f : X → Y is continuous
if and only if f |Xα : Xα → Y is continuous for every α ∈ I.

We can also consider the Cartesian products of topological spaces. First, we consider the product

X = X1 × . . .×XN =
N∏
i=1

Xi
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of finitely many topological spaces Xi. That is,

X = {(x1, . . . , xn) : xi ∈ Xi, i = 1, . . . , N}.

Let
B = {U1 × . . .× UN : Ui ⊆ Xi is open, i = 1, . . . , N}

be the collection of “open boxes”. The product topology on X is the topology generated by B. If
U1, . . . , UN , V1, . . . , VN are open sets with Uj , Vj ⊆ Xj for each j, then

(U1 × . . .× UN ) ∩ (V1 × . . .× VN ) = (U1 ∩ V1)× . . .× (UN ∩ VN ).

Thus, B is closed under taking intersections, and it follows that B is a basis for the product topology:
open sets in X are precisely the union of boxes.

Theorem 4 (Universal Property for Finite Products). Given topological spaces X1, . . . , XN , Y , a
map f : Y →

∏N
i=1Xi is continuous if and only if for each i = 1, . . . , N , the map πi ◦ f : Y → Xi is

continuous, where πi :
∏N

i=1Xi → Xi is the natural projection map.

Proof. Given i ∈ {1, . . . , N} and U ⊆ Xi open, then X1× . . .×U× . . .×XN is open in the product
topology. Hence,

f−1(X1 × . . .× U × . . .×XN ) = f−1(π−1
i (U)) = (π ◦ f)−1(U)

is open.

Conversely, since the boxes are a basis of the product topology, it suffices to show the claim for any
box. Let U1× . . .×UN be given, where each Ui ⊆ Xi is open. We have that y ∈ f−1(U1× . . .×UN )
if and only if (πi ◦ f)(y) ∈ Ui for each i = 1, . . . , N . Hence,

y ∈ (π1 ◦ f)−1(U1) ∩ . . . ∩ (πN ◦ f)−1(UN ),

which is open in Y . □

This immediately gives that the projection map is continuous.

Lecture 5 Exercises

1. Prove Theorem 3.

2. Let X be a topological space and A ⊆ X a subspace with the subspace topology T . Show
that the subspace topology is the coarsest topology such that the inclusion map ι : A ↪→ X
is continuous. That is, if T ′ is another topology on A such that ι : A → X is continuous,
then T ⊆ T ′.

3. LetX,Y1, Y2 be topological spaces and let f1 : X → Y1, f2 : X → Y2 be two functions. Suppose
f : X → Y1 × Y2 is defined by f(x) = (f1(x), f2(x)). Show that f is continuous if and only if
f1, f2 are continuous.
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Lecture 6: Operations on topological space ctd., Hausdorff spaces

Now that we have introduced finite products, we can deal with infinite products (we omit the
proofs). There are actually two topologies we can define on infinite products. Let us deal with the
case analogous to the finite product topology. Let {Xα}α∈I be a collection of topological spaces
and set X =

∏
α∈I Xα. The product topology on X is generated by the set

B = {
∏
α∈I

Uα : Uα ⊆ Xα is open for all α ∈ I, and Uα = Xα for all α ∈ I but finitely many α}.

The analogous universal property holds. Note that the latter condition is vacuous if I is finite,
so this definition agrees with our earlier definition. If we drop this condition, we end up with the
box topology on X. However, this does not satisfy the universal property, so we will only use the
product topology.

A particularly useful operation on a topological space is taking quotients. Let X,Y be topological
spaces and q : X → Y a surjective map. We call q a quotient map if U ⊆ Y is open if and only if
q−1(U) ⊆ X is open. We immediately see that q is continuous.

Theorem 5 (Universal Property for Quotient Maps). Let q : X → Y be a quotient map. Given a
topological space Z and a map f : Y → Z, then f is continuous if and only if f ◦ q is continuous.

Proof. If U ⊆ Z is open, then f−1(U) is open in Y if and only if q−1(f−1(U)) is open in X, by
definition of q being a quotient map. □

For a given function g : X → Y , the fibre of y ∈ Y under f is the preimage g−1({z}) = {x ∈ X :
g(x) = y}. In particular, we can think of the fibres of a function as its level sets.

Corollary. Let q : X → Y be a quotient map and f : X → Z a continuous mapping of topological
spaces. If f is constant on the fibres of q (i.e. if f(x) = f(y) for all x, y ∈ X such that q(x) = q(y)),
then there exists a unique function f̃ : Y → Z such that f = f̃ ◦ q. That is, f̃ makes the diagram

X

Y Z

q
f

f̃

commute.

Proof. Given y ∈ Y , choose x ∈ X such that q(x) = y. Define f̃(y) = f(x), so f̃ is well-defined
and uniquely given. By the universal property, f̃ is continuous. □

We say that “f passes to the quotient”.

We can now look at quotient topologies. Let X be a topological space and ∼ an equivalence relation
on X. The quotient set X/ ∼ is the set of equivalence classes of X. Given the natural quotient map
q : X → X/ ∼, where x is mapped to the equivalence class of x, we define the quotient topology as
U ⊆ X/ ∼ is open if and only if q−1(U) is open. Then q is a quotient map of topological spaces.

Example. Let X = [0, 1] ⊆ R with the Euclidean topology. Define x ∼ y if either x = y or x = 0,
y = 1 or x = 1, y = 0. That is, we identify 0 and 1 as the same point. We will show later that
X/ ∼ is homeomorphic to S1.

12



Note that π : X → X/ ∼ is not an open map, as π([0, 1/2)) is not open in S1. ⋄

Example. Let X = B1(0) ⊆ R2. Define ∼ on X by

x ∼ y if and only if

{
x1 = y1

x2 = y2
or


x1 = −y1

x2 = y2

(x1, x2) ∈ ∂X

.

We will show that X/ ∼ is homeomorphic to S2. ⋄

Example. Let X = [0, 1]2 ⊆ R2. Define ∼ by identifying (x, 0) ∼ (x, 1), (0, y) ∼ (1, y) for all
x, y ∈ [0, 1]. We will show later that X/ ∼ is homeomorphic to S1 × S1 (a torus). ⋄

Example (Projective Space). Let X = Rn+1\{0} and define x ∼ y if y = λx for some λ ∈ R\{0}.
Thus, we can think of X/ ∼ by the set of lines in Rn through the origin. We call RPn := X/ ∼
the n-dimensional real projective space. We can do the same construction to get n-dimensional
complex projective space, CPn. A fun fact is that RP1 and CP1 are homeomorphic to S1 and S2,
respectively. ⋄

Example (Collapsing of a Subspace). Let X be a topological space and A ⊆ X a subspace. Define
x ∼ y if x = y or x, y ∈ A. That is, we identify everything in A. Then X/ ∼= (X\A)

∐
{a} for

any a ∈ A. We call this procedure the collapsing of a subspace. For instance, if X is a cylinder and
A a horizontal cross section, then X/A is the union of two cones connected at a point. ⋄

Example (Wedge Sum). Let X1, . . . , Xn be topological spaces and xj ∈ Xj for each j = 1, . . . , n.
Define

X :=
n∨

i=1

Xi = X1 ∨ . . . ∨Xn =

(
n∐

i=1

Xi

)
/A,

where A = {(x1, . . . , xn)}. We call X the wedge sum of the Xi with base points xi. For instance,

⋄

Example. Let X be a topological space. The cone over X is C(X) := (X × [0, 1])/(X × {0}).
That is, we extend X into a “cylinder” then identify all points at the bottom surface. ⋄

Overall, quotients give a plethora of ways to construct fascinating and useful topological spaces.

Let us move on from operations on topological spaces to a special class of spaces called Hausdorff
spaces. We call a topological space X Hausdorff if given x, y ∈ X there exist open sets Ux, Uy ⊆ X
containing x, y, respectively, such that Ux ∩ Uy = ∅. That is, every pair of points in X can be
separated by open sets.

Example. X with the indiscrete topology is never Hausdorff. If X instead has the discrete
topology, then X is Hausdorff. ⋄

13



Example (Compatibility with Operations). • If X is Hausdorff and Y ⊆ X is a subspace,
then Y is Hausdorff.

• If X,Y are Hausdorff, then X
∐

Y is Hausdorff.

• If X,Y are Hausdorff, then X × Y is Hausdorff.

⋄

In general, a quotient space is not Hausdorff.

Example (The line with two origins). Consider R with the Euclidean topology. Then R×{0, 1} =
R
∐

R is Hausdorff. Define ∼ by (x, 0) ∼ (x, 1) for all x ∈ R\{0}. That is, on two copies of R, we
identify every point with itself on the other line except for the origin. The space X = R×{0, 1}/ ∼
is called the line with two origins. We claim that X is not Hausdorff. The problem points must be
the two origins, p = (0, 0) and q = (0, 1). Let ϵ > 0 be given and consider the sets

A = (−ϵ, 0) ∪ {(0, 0)} ∪ (0, ϵ), B = (−ϵ, 0) ∪ {(0, 1)} ∪ (0, ϵ),

where (−ϵ, 0), (0, ϵ) are intervals. We immediately have that A ∩ B ̸= ∅, so we need only show
that A and B are open. Let π : R× {0, 1} → X be the quotient map. By definition, π−1(A) is the
product of the open set (−ϵ, 0) ∪ (0, ϵ) on R × {1} and the open set (−ϵ, ϵ) on R × {0}. Hence,
π−1(A) is open, and a similar argument gives that π−1(B) is open. ⋄

We define the diagonal of a topological space X in the product space X ×X by

∆ = {(x, x) : x ∈ X} ⊆ X ×X.

The diagonal provides a nice characterization of Hausdorff spaces.

Proposition 6. A topological space X is Hausdorff if and only if the diagonal ∆ ⊆ X × X is
closed in the product topology.

We leave the proof as an exercise.

Another interesting example of a space that is not Hausdorff is Rn with the Zariski topology. The
Zariski topology is the natural topology arising in commutative algebra and algebraic geometry
when one studies varieties (vanishings) and the prime ideals of a commutative ring. We conclude
this lecture by introducing the Zariski topology. The proof of it failing to be Hausdorff is left
as an exercise. We stick with Rn, but note that the Zariski topology is much more general. In
particular, we can equip the spectrum of a ring - the set of prime ideals - with a topology called the
Zariski topology. While the construction is similar, familiarity with commutative algebra is more
important than in the Rn case.

First, we note that every polynomial f ∈ R[x1, . . . , xn] can be written as the sum of monomials of
the form xi11 . . . xinn where (i1, . . . , in) ∈ Zn

≥0. We define the zero locus of f ∈ R[x1, . . . , xn] as

V (f) := {x ∈ Rn : f(x) = 0}.

More generally, if S ⊆ R[x1, . . . , xn] is a set of polynomials, we define

V (S) := {x ∈ Rn : f(x) = 0 for all f ∈ S}.

14



The Zariski topology on Rn is defined by taking the closed sets to be all sets of the form V (S) for
some set S ⊆ R[x1, . . . , xn]. We take V () = Rn.

Theorem 6. The Zariski topology satisfies the axioms of a topology.

Proof. We must show that

(i) ∅,Rn ∈ T ;

(ii) if C1, . . . , CN are closed, then
⋃N

i=1CN is closed;

(iii) if {Cα}α∈I is a collection of closed sets, then
⋂

α∈I Cα is closed.

(i) We have that Rn = V (∅) and ∅ = V (Rn).

(ii) It suffices to show the claim for just two closed sets C1, C2. Write C1 = V (S1), C2 = V (S2) for
some S1, S2 ⊆ R[x1, . . . , xn]. We claim that V (S1) ∪ V (S2) = V (S1S2), where

S1S2 = {f1f2 : f1 ∈ S1, f2 ∈ S2}.

We immediately have V (S1) ∪ V (S2) ⊆ V (S1S2). For the converse, take x ∈ V (S1S2). Choose
g ∈ S2 such that g(x) ̸= 0 (if no such g exists, the claim is trivial). Then f(x) = 0 for all f ∈ S1,
as (fg)(x) = 0 for all f ∈ S1 and g ̸= 0. Thus, x ∈ V (S1).

(iii) We claim that
⋂

α∈I V (Sα) = V (
⋃

α∈I Sα), where Cα = V (Sα) for each α ∈ I. We have
x ∈ V (

⋃
α∈I Sα) if and only if f(x) = 0 for all f ∈ Sα, α ∈ I. But this is exactly saying

that x ∈
⋂

α∈I V (Sα). □

Lecture 6 Exercises

1. Consider X = R with the Euclidean topology and A = Q ⊆ X with the subspace topology.
Is Y = X/A with the quotient topology Hausdorff?

2. Show that any metric space is Hausdorff.

3. Prove that the product of two Hausdorff spaces is Hausdorff.

4. Prove Proposition 6.

5. Show that Rn equipped with the Zariski topology is not Hausdorff. Hint: if f ∈ R[x1, . . . , xn]
satisfies f(x) = 0 for all x ∈ Rn, then f ≡ 0.

15



Lecture 7: Countability axioms, Manifolds

In mathematics, it is often convenient to work with countable objects. As we have seen, many
important topological spaces are uncountable. However, we can sometimes find a basis for the
topology that is countable. This brings us to the idea of countability axioms.

A topological space X is called second countable it has a countable basis. That is, there exists a
basis of the form {Un}n∈N where each Un ⊆ X is open. Every open set U ⊆ X can then be written
as
⋃

m∈N Unm for some subcollection of {Un}n∈N.
Proposition 7. Rn is second countable

Proof. We claim that
B = {Br(x) : r ∈ Q>0, x ∈ Qn}

is a basis for Rn. Let U ⊆ Rn be open. For any x ∈ U , there exists a ball Br(x) ⊆ U with
r > 0. Since Qn is dense in Rn, we can find y ∈ Qn with d(x, y) < r/3. Now pick s ∈ Q such that
0 < r/3 < s < r/2. Let B = Bs(y) ∈ B. Then d(x, y) < r/3 < s, so x ∈ B. If z ∈ Bs(y), then
d(x, z) ≤ d(x, y) + d(z, y) < r, so z ∈ Br(x). Hence, Bs(y) ⊆ U . □

We could also take boxes with rational centers and side lengths as a basis of Rn.

There is also a notion of first countability. This is much weaker and more of a “local” countability
statement. We say that a topological space X is first countable if for any x ∈ X there exists a
countable collection of open sets {Ux

n}n∈N, where each Ux
n contains x, such that any open set U

containing x also contains some Ux
n . We can think of first countability as giving a local basis,

whereas second countability is a global statement (like continuity vs. uniform continuity). Any
second countable space is also first countable (see the exercises).

One of the important type of spaces in analysis are those that have a countable dense subset. We
call such a space separable. More precisely, a topological space X is separable if there exists a
countable and dense set A ⊆ X. These sets play an important role in functional analysis. For
instance, any separable Banach space has a Schauder basis. In any separable Banach space X, we
also know that the closed unit ball in X∗, the dual space of X, is sequentially weak-* compact.
This is a special case of the Banach-Alaoglu theorem, and is often used in PDE analysis due to its
incredibly general statement. At least now, we will not delve too deep into the theory of separable
spaces. However, we do have the following nice result.

Theorem 7. Let X be a second countable topological space. Then X is separable.

Proof. Let {Un}n∈N be the countable basis of X. For each n ∈ N, choose xn ∈ Un and let
A =

⋃
n∈N xn. Then A is countable. Suppose A is not dense. Then U = X\A is a non-empty open

set. Then there exists n ∈ N such that xn ∈ Un ⊆ A, a contradiction. □

Example.

• If A ⊆ X is a subspace of a second countable space X, then A is second countable.

• If {Xn}n∈N is a countable collection of second countable spaces, then
∏

n∈NXn,
∐

n∈NXn are
second countable.

⋄
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Example. Suppose X is uncountable and has the discrete topology. Then X is not second count-
able. Indeed, all singletons {x} are open, and any basis of X must contain all the singletons. ⋄

We are now ready to introduce manifolds. A set M is a topological n-manifold if

(i) M is Hausdorff;

(ii) M is second countable;

(iii) for every x ∈ M , there exists an open set U ⊆ M and a homeomorphism ϕ : U → V where
V ⊆ Rn is open in the Euclidean topology.

Manifolds are a special class of topological spaces that are “locally Euclidean”.

Example. Rn is an n-manifold, along with any open set U ⊆ Rn. ⋄

Example. Sn is an n-manifold. To see this, let x ∈ Sn and take ϕ : Sn\{y} → Rn a stereographic
projection, where y ̸= x. ⋄

Proposition 8. If M is an m-manifold and N an n-manifold, then M×N is an (m+n)-manifold.

The proof is omitted (see Lee’s book).

Example. The n-torus Tn = S1 × · · · × S1︸ ︷︷ ︸
n times

is an n-manifold. ⋄

Example. Real projective space RPn is an n-manifold. We call [x0 : x1 : . . . : xn], an equivalence
classes in RPn, a projective coordinate. Let x = [x0 : x1 : . . . : xn]. Since x ̸= 0, at least one
coordinate xj of x is non-zero. Thus,

x ∈ Uj := {[x0 : . . . : xn] : xj ̸= 0}

is well-defined. Define a map φj : Uj → Rn by

φj(x) :=
1

xj
(x0, . . . , xj−1, xj+1, . . . , xn).

Then φj is bijective, with inverse

φ−1
j (y) := [y1 : . . . : yj−1 : 1 : yj+1 : . . . : yn].

Moreover, φj is continuous by the universal property of quotients, since φ̂j : Rn+1\{0} → Rn given
by

φ̂j(x0, . . . , xn) =
1

xj
(x0, . . . , xj−1, xj+1, . . . , xn)

is continuous. A similar construction from Rn → Rn+1\{0} gives that φ−1
j is continuous. Thus,

the third condition is satisfied. We omit checking the other two conditions. ⋄

Lecture 7 Exercises

1. (a) Show that second countability implies first countability.
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(b) Show that R with the discrete topology is first countable (we already showed it is not
second countable!).

2. Prove that X is a 0-manifold if and only if X is countable and has the discrete topology
(recall that R0 is a singleton).

3. For each n ∈ N, let Xn := S1 with a fixed basepoint xN ∈ Xn, and let

X :=
∞∨
n=1

Xn,

be the wedge sum of the circles at these basepoints. Prove that X is not second countable.
Hint: show that X is not first countable.

4. Let X be a second countable space. Show that every collection of disjoint open subsets of X
is countable.

5. Show that a metric space is second countable if and only if it is separable.

6. Let M be an n-manifold with boundary. Show that M◦ is an n-manifold and ∂M an (n− 1)-
manifold (without boundary).
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Lecture 8: Connectedness, Path-connectedness,

We have discussed various types of topological spaces like new topological spaces from old ones,
Hausdorff spaces, second countable spaces, separable spaces. Another type of topological spaces
are connected spaces. We call a topological space X separated if there exist non-empty, disjoint
open sets U, V ⊆ X such that X = U ∪ V . That is, X is separated if it is the disjoint union of two
open sets. If X is not separated, we call X connected. We list some useful properties of connected
spaces.

Proposition 9. Let X be a topological space. Then X is connected if and only if ∅ and X are
the only sets that are both open and closed.

Proof. Let A be a set that is both open and closed. Then X = A ∪ (X\A). □

The following proposition is particularly useful with Y = Z.

Proposition 10. Let X be connected and Y have the discrete topology. If f : X → Y is contin-
uous, then f is constant.

Proof. Let x ∈ X be given and set y = f(x). Then {y} is open and closed, so that f−1({y}) is
open, closed, and non-empty. Hence f−1({y}) = X. □

We can also prove the intermediate value theorem given a characterization of connected sets in R.
First, a more general result.

Proposition 11. Let X,Y be topological spaces and f : X → Y a continuous map. If X is
connected, then f(X) ⊆ Y is connected.

Proof. Suppose instead f(X) = U ∪ V for non-empty, disjoint open sets U, V ⊆ Y . Then X =
f−1(U) ∩ f−1(V ), a contradiction. □

Theorem 8. A subset A ⊆ R is connected if and only if it is an interval.

Proof. Let A be a connected set in R. We must show that if a, b ∈ A and a ≤ c ≤ b, then c ∈ A.
Suppose instead there are a, b ∈ A and a < c < b such that c /∈ A. Then (−∞, c)∩A and [c,∞)∩A
are open in A, disjoint, and their union is equal to A, a contradiction.

Suppose instead A is an interval and separated. Then there are U, V ⊆ R such that A ∩ U and
A ∩ V separate A. Choose a ∈ A ∩ U , b ∈ A ∩ V . Without loss of generality, take a < b. Then
[a, b] ⊆ A, as A is an interval. Since U and V are open, there is ϵ > 0 such that [a, a+ ϵ) ⊆ U ∩A
and (b− ϵ, b] ⊆ V ∩A. Let c = sup(U ∩ [a, b]), so a+ ϵ ≤ c ≤ b− ϵ, so

c ∈ (a, b) ⊆ A ⊆ U ∪ V.

If c ∈ U , then (c − δ, c + δ) ⊆ U for some δ > 0, which can be chosen such that δ < ϵ. Then
(c− δ, c+ δ) ⊆ [a, b]. Thus, (c− δ, c+ δ) ⊆ U ∩ [a, b]. But then c ≥ c+ δ, which is absurd. Hence,
c ∈ V and (c − δ, c + δ) ⊆ V ∩ [a, b] for some δ < ϵ. But then (c − δ, c + δ) ∩ (U ∩ [a, b]) = ∅, so
that c ≤ c− δ, a contradiction. □

Corollary (Intermediate Value Theorem). Suppose X is connected and f : X → R is continuous.
Then given p, q ∈ X, f attains every value between f(p) and f(q).
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The proof is an immediate consequence of the above two theorems.

Example. R is not homeomorphic to [0,∞). Suppose instead it was and let f : [0,∞) → R
be a homeomorphism. Let x = f(0). Then f |(0,∞) : (0,∞) → R\{x} is a homeomorphism, a
contradiction. ⋄

Some more useful facts:

Proposition 12. Let X be a topological space.

(i) Let U, V ⊆ X open and disjoint, A ⊆ X a connected subspace. If A ⊆ U ∪ V , then A ⊆ U
or A ⊆ V .

(ii) If A ⊆ X is a connected subspace, then A is connected.

(iii) If {Aα}α∈I is a family of connected subspaces of X with
⋂

α∈I Aα ̸= ∅, then
⋃

α∈I Aα ⊆ X
is connected.

Proof. (i) Write A = (A ∩ U) ∪ (A ∩ V ). Since A is connected, one of these intersections must be
empty.

(ii) Suppose A ⊆ U ∪V , where U, V ⊆ X are open such that U ∩A, V ∩A separate A. In particular,
U∩A, V ∩A are closed sets in A. We have that A ⊆ A ⊆ U∪V , so by (i) we may assume A ⊆ U∩A.
Taking closures, we have A ⊆ U ∩A, since U ∩A is closed in the subspace topology on A. But this
is absurd, since V ∩A and U ∩A are disjoint.

(iii) Suppose U, V ⊆ X are open and separate A =
⋃

α∈I Aα. Then A ∩ U , A ∩ V are non-empty,
disjoint open subsets of A and A ⊆ U ∪ V . Pick x ∈

⋂
α∈I Aα. Without loss of generality, we may

assume x ∈ U . Then x ∈ U ∩ Aα for each α ∈ I. By (i), Aα ⊆ U for all α ∈ I, so that A ⊆ U , a
contradiction. □

We have introduced a general type of connectedness. However, in spaces like Rn we often think
of another type of connectedness, where we can draw continuous curves between any two points.
Such a space is called path connected. More precisely, let X be a topological space and p, q ∈ X.
A path from p to q is a continuous map γ : [0, 1] → X such that γ(0) = p and γ(1) = q. We call X
path connected if there exists a path between any two points of X.

Theorem 9. If X is path connected, then X is connected.

Proof. Fix p ∈ X. Then given any q ∈ X, there exists a path γq : [0, 1] → X from p to q. Let
Aq = γq([0, 1]). Since [0, 1] is connected and γq continuous, Aq is connected. Now, p ∈

⋂
q∈X Aq

and X =
⋃

q∈X Aq, so (iii) above gives that X is connected. □

Lecture 8 Exercises

1. Let X = R2\Q2 with the induced Euclidean topology as a subspace of R2. Show that X is
path connected.

2. Let f : S1 → R be continuous. Show that there exists x ∈ S1 such that f(x) = f(−x).

3. Let X be the line with two origins (Lecture 6), and let x, y ∈ X be the two origins. Show
that X is path connected, but there is no injective path from x to y.
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Lecture 9: Path-connectedness ctd., Connected components, Locally connected

We start with some examples of path connected spaces. Note that joining two paths creates a new
path.

Example. • For n ≥ 2, Rn\{0} is path connected.

• For n ≥ 1, Sn is path connected.

⋄

Example (Topologist’s sine curve). Let

A = {(x, sin
(
1

x

)
) : 0 < x ≤ 1} ⊆ R2

be the graph of sin(1/x) over (0, 1]. Let X = A. Then X = A ∪ {(0, y) : −1 ≤ y ≤ 1}. Note that
A is homeomorphic to (0, 1] via φ : (0, 1] → A given by

φ(x) = (x, sin(1/x)), φ−1(x, y) = x.

Since (0, 1] is connected, A is connected, and hence A is connected. However, A is not path
connected. Suppose it was. Then there exists a path γ such that γ(0) = (0, 0) and γ(1) =
(1/(2π), 0). Write γ(t) = (x(t), y(t)), where x, y are continuous, x(0) = 0 and x(t) > 0 for all t > 0
(without loss of generality), and y(0) = 0, y(t) = sin(1/x(t)) for all t > 0. Given n ∈ N, we can
find 0 < τ < x(1/n) such that sin(1/τ) = (−1)n. By the intermediate value theorem applied to x,
there is 0 < tn < 1/n such that x(tn) = τ . Hence,

y(tn) = sin(1/x(tn)) = sin(1/τ) = (−1)n

for all n ∈ N. But y is continuous and y(0) = 0, so this is absurd. See Figure 1. ⋄

Figure 1: The topologist’s sine curve (stolen from Wikipedia).
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Now that we have introduced the two major notions of connectedness, let us introduce a convenient
interpretation of connectedness. Let X be a topological space and fix x ∈ X. Define

Cx := {A ⊆ X : x ∈ A, A is connected}.

Then Cx is non-empty, as it contains {x}. Define

Cx :=
⋃

A∈Cx

A,

the connected component of x in X. Note that Cx is actually connected, as each A is connected,
and contains x. In fact, it is the largest such set.

Proposition 13. Let X be a topological space and x, y ∈ X. If Cx ∩ Cy ̸= ∅, then Cx = Cy.

Proof. Let z ∈ Cx ∩ Cy. Then Cx ∪ Cy is connected, and equal to Cx and Cy by maximality. □

Thus, the connected components partition X.

Remark. Since A is connected whenever A is connected, connected components are always closed.
However, they may not be open.

Example. Let X = Q2 with the subspace topology. Then for any x ∈ X, Cx = {x}. To see
this, let y ∈ Cx and write x = (a, b), y = (c, d) where, without loss of generality, a < c. Choose
λ ∈ (a, c) ∪Qc. Let

U = {(α, b) : α < λ}, V = {(α, b) : α > λ} ⊆ Q2.

Then U and V separate Cx, a contradiction. ⋄

Similarly, we can define path components Px, the union of all path-connected subsets of X which
contain x. These also partition X, and since path-connectedness implies connectedness, Px ⊆ Cx.

Example. If X is the topologist’s sine curve and x = (0, 0), then Cx = X but Px = {(0, y) : −1 ≤
y ≤ 1}. Thus, path components need not be equivalent to connected components. ⋄

The notion of connectedness discussed thus far is global. It can sometimes be convenient to have
a local description of (path) connectedness. We call a topological space X locally connected (resp.
locally path connected) if for every x ∈ X and any open set Ux ⊆ X that contains x, there is an
open set V ⊆ U such that x ∈ V and V is connected (resp. path connected). As before, we have
that local path-connectedness implied local connectedness.

Example. Rn with the Euclidean topology is locally path connected, since balls are path connected
and form a basis. ⋄

Example. The topologist’s sine curve is connected but not locally connected, as every ball cen-
tered at a point on the y-axis intersected with A consists of infinitely many disjoint “segments”. ⋄

Example. R
∐

R is not connected but is locally connected. ⋄

Example. Every n-manifold is locally connected. ⋄

Proposition 14. If X is locally (path) connected and x ∈ X, then the connected component Cx

(Px) is open.
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Proof. If y ∈ Cx, then y ∈ U ⊆ X for some open and connected set U . By maximality, Cx∪U = Cx.
Hence, U ⊆ Cx, so y is an interior point of Cx. □

Proposition 15. Let X be locally path connected. Then X is connected if and only if X is path
connected.

Proof. We need only show the forward direction. Let x ∈ X. We know that Cx = X, and want to
show that Px = X as well. Suppose not and let V := X\Px. Since X is locally path connected, Px

is open, so V is closed. Since X is partitioned by the path components, we can write

V =
⋃
α∈I

Pα,

where the union does not include Px. Hence, V is open, a contradiction to X being connected. □

Remark. For a general topological space, Cx is always closed but Px may not be. For instance,
for X the topologist’s sine curve and A defined as in the example, any x ∈ A has Px = A, which is
not closed in X.

Lecture 9 Exercises

1. Let X,Y be connected spaces and A ⊊ X, B ⊊ Y proper subsets. Show that

(X × Y )\(A×B)

is connected.

2. Let X be a topological space and Cx the connected component of x ∈ X. Let C ′
x be the

intersection of all clopen (closed and open) sets containing x. Show that Cx ⊆ C ′
x, with

equality if X is locally connected.
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Lecture 10: Compactness

Our final excursions in point-set topology will look at compact spaces. First, let X be a topological
space. A collection of open sets {Uα}α∈I in X is an open cover of X if X =

⋃
α∈I Uα. We call

X compact if any open cover of X admits a finite subcover. More precisely, if {Uα}α∈I is an open
cover of X, then there are Uα1 , . . . , UαN ∈ {Uα}α∈I , where N ∈ N, such that X =

⋃N
i=1 Uαi .

Example. Any finite set with any topology is compact. Moreover, any set with the indiscrete
topology is compact. ⋄

Example. If X has the discrete topology, then X is compact if and only if it is finite. ⋄

Proposition 16. Let X,Y be topological spaces, f : X → Y a continuous map. If X is compact,
then f(X) ⊆ Y is compact.

Proof. Let {Uα}α∈I be any open cover of f(X) in Y . Then {f−1(Uα)}α∈I is an open cover of X,
hence we can extract a finite subcover X =

⋃N
i=1 Uαi . But then f(X) =

⋃N
i=1 Uαi . □

Corollary. If X is compact and q : X → Y a quotient map, then q(Y ) is compact.

Theorem 10. Given real numbers a ≤ b, the closed interval [a, b] is compact.

Proof. We may assume a < b. Let {Uα}α∈I be any open cover of [a, b]. Define

X := {x ∈ (a, b] : [a, x] is covered by finitely many Uα}.

We claim that X ̸= ∅. Since the Uα cover [a, b], we can choose a ∈ U1. Since U1 is open, (a, x] ⊆ U1

for some x > a. Thus, x ∈ X.

Let c = supX ≤ b. Then c ∈ (a, b], and some U0 in the collection of Uα contains c. Since U0 is
open, there exists ϵ > 0 such that (c−ϵ, c] ⊆ U0. Now, c = supX, so there is x ∈ (c−ϵ, c), and [a, x]
is covered by some U1, . . . , UN in {Uα}α∈I . Then U0, . . . , UN covers [a, c], so that c ∈ X. If c = b,
then we are done. Assume not. Choose x ∈ (c, b). Then [a, x] ⊆ U0 ∪ . . . ∪ UN , a contradiction.
Thus, b ∈ X. □

We will use this theorem to later prove the Heine-Borel theorem. First, two lemmas. The first of
these lemmas is a separation result.

Lemma 1. Suppose X is a Hausdorff space, A,B ⊆ X compact subsets of X with A ∩ B = ∅.
Then there are open and disjoint sets U, V ⊆ X such that A ⊆ U , B ⊆ V . That is, A and B can
be separated by open sets.

Proof. First assume that B = {q} is a singleton. Given any p ∈ A, there are disjoint open sets
Up, Uq containing p, q, respectively. Then {Up}p∈A is an open cover of A, hence A ⊆

⋃N
i=1 Upi

for some p1, . . . , pN ∈ A. Then
⋃N

i=1 Upi and
⋂N

i=1 Vpi are disjoint open sets containing A and B,
respectively.

For the general case, the above gives that for each q ∈ B there are Uq, Vq disjoint open sets in X
such that A ⊆ Uq and q ∈ Vq. Choose a finite subcover Vq1 , . . . , VqM of B for some qi ∈ B. Then

A ⊆
⋂M

i=1 Uqi and B ⊆
⋃M

i=1 Vqi are disjoint open sets. □

The next lemma provides a useful result for finding neighbourhoods around “lines” in a product.
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Lemma 2. Let X be a topological space and Y ⊆ X a compact subspace. Given x ∈ X and
U ⊆ X × Y open with {x} × Y ⊆ U , there exists x ∈ V ⊆ X open such that V × Y ⊆ U .

Proof. Since open boxes are a basis for X × Y , given y ∈ Y there are Vy ⊆ X, Wy ⊆ Y open such
that (x, y) ∈ Vy ×Wy ⊆ U . Now, {x} × Y is homeomorphic to Y , hence compact. Thus, we may

choose a finite subcover {x} × Y ⊆
⋃N

i=1 Vyi ×Wyi for some y1, . . . , yN ∈ Y . Then V :=
⋂N

i=1 Vyi is
open in X, contains x, and

V × Y = V ×

(
N⋃
i=1

Wyi

)
=

N⋃
i=1

(V ×Wyi) ⊆
N⋃
i=1

Vyi ×Wyi ⊆ U.

□

We can now state some important results for compact spaces.

Theorem 11 (Properties of Compact Spaces/Subsets).

(i) If X is compact, A ⊆ X closed, then A is compact.

(ii) If X is Hausdorff, A ⊆ X compact, then A is closed.

(iii) If (X, d) is a metric space, A ⊆ X compact, then A is bounded.

(iv) If X1, . . . , Xn are compact, then
∏n

i=1Xi is compact.

Proof. (i) Let {Uα}α∈I be an open cover of A. Then {Uα}α∈I ∪ (X\A) is an open cover of X.
Hence X = U1 ∪ . . . ∪ UN ∪ (X\A) for some Ui in the open cover. Thus, A ⊆ U1 ∪ . . . ∪ UN .

(ii) Given any x ∈ X\A, the first lemma gives that A ⊆ U and x ∈ V for some disjoint open sets
U, V ⊆ X. Then V ∩A = ∅, so A is open.

(iii) Given any x ∈ X, we have X =
⋃∞

n=1Bn(x). Extract a finite subcover of A, A ⊆
⋃m

k=1Bnk
(x)

and choose r = max(n1, . . . , nm). Then A ⊆ Br(x).

(iv) By induction, it suffices to show the claim for n = 2. Let {Uα}α∈I be an open cover of X × Y .
For any x ∈ X, {x}×Y is compact and covered by the Uα, hence covered by some Ux

1 , . . . , U
x
Nx

. By

the second lemma, there is some Vx ⊆ X open such that Vx × Y ⊆
⋃Nx

i=1 U
x
i . Now, X =

⋃
x∈X Vx,

so we extract a finite subcover Vx1 , . . . , Vxm for some xi ∈ X. Thus,

X × Y =

(
m⋃
i=1

Vxi

)
× Y =

m⋃
i=1

Vxi × Y ⊆
m⋃
i=1

Nxi⋃
j=1

Uxi
j .

□

Lecture 10 Exercises

1. Let X be compact and Y Hausdorff. Show that any injective, continuous function f : X → Y
is a homeomorphism between X and its image f(X).

2. Let X be a topological space. A collection of subsets of X, B ⊆ P(X), satisfies the finite
intersection property if for every nonempty finite subcollection C ⊆ B, we have

⋂
C∈C C ̸= ∅.

Show that X is compact if and only if every collection of closed subsets of X that satisfies
the finite intersection property has non-empty intersection.
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Lecture 11: Compactness ctd., Local compactness, Baire Category Theorem

From last lecture, we know that finite products of compact spaces are compact. The same is true
for arbitrary products. This is Tychonoff’s Theorem.

Theorem 12 (Tychonoff). Let {Xα}α∈I be compact spaces. Then
∏

α∈I Xα is compact.

The proof is tediuos and is omitted. See Munkres for the proof.

Corollary (Heine-Borel). A subset A ⊆ Rn is compact if and only if A is closed and bounded.

Proof. Since Rn is Hausdorff, the “’only if” direction follows from the properties of compact subsets.
For the converse, since A is bounded we have A ⊆ [−r, r]n for some r > 0. Since [−r, r] is compact
in R, the cube [−r, r]n is compact in Rn. Then A is a closed subset of a compact set, hence
compact. □

Corollary. If X is compact and f : X → R is continuous, then f is bounded and attains a global
maximum and minimum on X.

Proof. We know that f(X) ⊆ R is compact, hence closed and bounded. Thus, f is bounded.
Moreover, f(X) closed means that supx∈X f(x) ∈ f(X), and similarly infx∈X f(x) ∈ f(X). □

We say that sets {An}n∈N are nested if An+1 ⊆ An for each n ∈ N.

Proposition 17. Let X be a compact space and {Fn}n∈N a collection of nested, nonempty, closed
subsets of X. Then

⋂∞
n=1 Fn ̸= ∅.

Proof. Suppose instead
⋂∞

n=1 Fn = ∅. Let Un = X\Fn for each n ∈ N. Then each Un is open,
Un ⊆ Un+1 for each n ∈ N, and X =

⋃∞
n=1 Un. Hence, we may extract a finite subcover X =⋃N

j=1 Unj . Then

∅ =

N⋂
j=1

Fnj = FnN ̸= ∅,

a contradiction. □

Remark. This proposition fails if X is not compact. For instance, take X = R and Fn = [n,∞).

Now that we have introduced compactness at the global level, we may study the idea of compactness
locally. We call a topological space X locally compact if, given x ∈ X there is a compact set Kx ⊆ X
and an open set Ux ⊆ X such that x ∈ Ux ⊆ Kx. That is, every x has an open neighbourhood that
is contained in some compact set. This notion is particularly useful when X is Hausdorff. Before
stating the lemma, note the following definition. We call a set A ⊆ X relatively compact if A is
compact in X.

Example. Rn is locally compact. ⋄

The main lemma essentially says that we can swap the roles of the compact and open sets in
the definition of locally compact spaces, given that the space is Hausdorff. That is, every open
neighbourhood of a point in a locally compact Hausdorff space contains a compact neighbourhood
of the point. This contrasts with the general definition of locally compact, where every point has
some compact neighbourhood that contains an open neighbourhood of the point.
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Lemma 3. Let X be a locally compact Hausdorff space. Then, given any x ∈ X and open set
U ⊆ X that contains x, there exists a relatively compact open set Vx ⊆ X such that

x ∈ Vx ⊆ Vx ⊆ U.

Proof. Since X is locally compact, we can find an open set W and a compact set K in X such that
x ∈ W ⊆ K. Since X is Hausdorff, K is closed, so that K\U is also closed. But then K\U ⊆ K is
compact. If K\U = ∅, we have K ⊆ U . Hence

W ⊆ W ⊆ K ⊆ U,

as desired. Suppose now that K\U ̸= ∅. Then, since x ∈ U , the compact sets {x} and K\U
are disjoint. Thus, we may choose disjoint open sets (Lemma 1) Y,Z ⊆ X such that x ∈ Y and
K\U ⊆ Z. Define the open set Vx := Y ∩W . Then x ∈ Vx, and Vx ⊆ W , so that

Vx ⊆ W ⊆ K.

In particular, Vx is compact. Lastly,

Vx ⊆ Y ∩K ⊆ (X\Z) ∩K = K\Z ⊆ U,

where the last inclusion is because K\U ⊆ Z. Since K\Z is closed, we also have Vx ⊆ U , as
desired. □

We now shift our focus to the Baire Category Theorem (BCT). There are two versions of this
theorem, and we will present and prove both versions. The second version also has an equivalent
statement, which can be quite useful. The BCT is incredibly useful in functional analysis, providing
the foundation for proving the Open Mapping Theorem, Closed Graph Theorem, and Uniform
Boundedness Theorem. These incredibly powerful theorems form the basis for much of the subject.
We will show that first version of BCT in this lecture, and the second next lecture.

We begin with some basic definitions. Let X be a topological space. A subset A ⊆ X is called a Gδ

set if it is the countable intersection of open sets. The complement of a Gδ set is called an Fσ set
- a countable union of closed sets. Before stating the first version of BCT, we have the following
remark.

Remark. A set A ⊆ X is dense if and only if for any open set U ⊆ X, A ∩ U ̸= ∅.

Proof. If A∩U = ∅, then A ⊆ X\U . But X\U is closed and A = X, a contradiction. Conversely,
if A ̸= X, then A ∩ (A)c = ∅, □

Theorem 13 (BCT V1). Let X be a locally compact Hausdorff space and {Un}∞n=1 open and
dense subsets of X. Then the set

⋂∞
n=1 Un is dense in X.

We note that the Gδ set
⋂∞

n=1 Un need not be open.

Proof. Suppose instead B :=
⋂∞

n=1 Un is not dense in X, so that U := X\B is non-empty, open,
and disjoint from B. Since U1 is dense, U ∩U1 ̸= ∅, so by Lemma 3, there is a nonempty, relatively
compact open set W1 ⊆ W1 ⊆ U ∩ U1. Since U2 is dense, W1 ∩ U2 ̸= ∅, so we may choose W2, a
nonempty, relatively compact open set, such that

W2 ⊆ W2 ⊆ U2 ∩W1 ⊆ W1.
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Continuing in this way (by induction), we get a collection of nested compact sets {Wn}∞n=1. By
an earlier proposition,

⋂∞
n=1Wn ̸= ∅. However,

⋂∞
n=1Wn ⊆ W1 ⊆ U and

⋂∞
n=1Wn ⊆

⋂∞
n=1 Un, a

contradiction to B ∩ U = ∅. □

Lecture 11 Exercises

1. We consider Q ⊆ R with the induced Euclidean subspace topology. Use BCT V1 to show
that Q is not locally compact.

2. Show that R\Q is not locally compact.
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Lecture 12: Baire Category Theorem ctd., Homotopy

The second version of BCT is a statement about metric spaces. We first recall some basic met-
ric space concepts needed to formulate the theorem. Then, we introduce some new topological
terminology needed to state an equivalent formulation of BCT V2.

Let (X, d) be a metric space. A sequence {xn}n∈N ⊆ X converges to x ∈ X if for every ϵ > 0 there
is N ∈ N such that d(x, xn) < ϵ whenever n ≥ N . We call the sequence Cauchy if for every ϵ > 0
there is N ∈ N such that d(xm, xn) < ϵ whenever n,m ≥ N .

Remark. Every convergent sequence is Cauchy.

Proof. Let ϵ > 0 be given. Then d(xn, xm) < d(x, xn) + d(x, xm) < ϵ for all n,m sufficiently
large. □

However, not every Cauchy sequence is convergent.

Example. Let X = R\{0} with the Euclidean metric. Then {1/n}n∈N is Cauchy yet does not
converge in X. ⋄

A metric space where every Cauchy sequence is also convergent is called complete.

Example. Rn with the Euclidean metric is complete. ⋄

Example. Any closed subset of a metric space is complete with the induced subspace metric. ⋄

Example. Let X = C([0, 1]) with the L∞ metric (the sup-metric). Then X is complete. ⋄

Theorem 14 (BCT V2). Let (X, d) be a nonempty complete metric space and {Un}∞n=1 be open
and dense subsets of X. Then

⋂∞
n=1 Un is dense in X.

More generally, a Baire space is a space where countable intersections of open and dense sets
remain dense. Thus, BCT V1 and V2 say that locally compact Hausdorff spaces and complete
metric spaces are two types of topological spaces that are Baire spaces. We will later sketch the
proof of BCT V2, as it is, at least initially, very similar to the proof of BCT V1.

The BCT V2 has an elegant equivalent statement, though we need some more theory to state it.
Let X be a topological space. We call A ⊆ X no-where dense if (A)◦ = ∅ - the closure of A has
empty interior. A set of first category is any countable union of no-where dense sets. If a set if
not of first category, we say it is a set of second category. More precisely, if we write E =

⋃∞
n=1En

for some set En ⊆ X, then E is of second category if some En is not no-where dense ((En)
◦ ̸= ∅).

With this, we can restate BCT V2 as follows.

Theorem 15 (BCT V2∗). Every complete metric space is of the second category.

Proposition 18. The two formulations of the Baire Category Theorem for complete metric spaces
are equivalent.

Proof. First suppose BCT V2 holds. Write X =
⋃∞

n=1Xn and assume X is of first category. Then
each Xn is no-where dense, and, without loss of generality, we may take each Xn to be closed. Then
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the Xc
n are all open and dense. Hence,

∅ = Xc =

∞⋂
n=1

Xc
n ̸= ∅,

a contradiction.

Suppose instead BCT V2∗ holds. Let U =
⋂∞

n=1 Un and suppose V ⊆ X is any open set. We
show U ∩ V ̸= ∅, so that U is dense (see the remark in Lecture 11). Consider the complete metric
subspace V ⊆ X. We claim that Un∩V is open and dense in the subspace topology on V . Observe
that if W ⊆ X is open, then

(W ∩ V ) ∩ (Un ∩ V ) = (W ∩ Un) ∩ V

is open in the subspace topology. Each Un is dense in X, so we also have that Un ∩ V is dense in
V . Now suppose instead

U ∩ V =
∞⋂
n=1

Un ∩ V = ∅.

Then in V , we have
∞⋃
n=1

V \(Un ∩ V ) = V .

But each V \(Un∩V ) is no-where dense and closed in V , so V is of first category, a contradictin. □

We now sketch the proof of BCT V2.

Proof of BCT V2 (sketch). Following the same ideas as in the proof of BCT V1, we can find a
sequence of points {xn}n∈N and positive real numbers {ϵn}n∈N such that ϵn < 1/n,

Bϵn+1(xn+1) ⊆ Bϵn(xn),

and
Bϵn(xn) ⊆ U ∩ U1 ∩ . . . ∩ Un,

where U = X\∩∞
n=1Un, for all n ∈ N. We claim that {xn}n∈N is Cauchy. Indeed, for all m ≥ n,

we have xm ∈ Bϵn(xn), so d(xm, xn) ≤ ϵn < 1/n. Since X is complete, we can denote the limit of
{xn} by x ∈ X. Now,

xm ∈ Bϵn(xn) ⊆ U ∩ U1 ∩ . . . ∩ Un

for all m ≥ n. Passing to the limit, we find that x ∈ U ∩ U1 ∩ . . . ∩ Un. This holds for arbitrary n,
so in fact x ∈ U ∩ (

⋂∞
n=1 Un), a contradiction. □

Let us examine an examples to see the power of BCT.

Example. Let f ∈ R[x, y] be a non-zero real polynomial in x, y. Then U = {x ∈ R2 : f(x) ̸= 0}
is open in the Euclidean topology and dense. If it were not dense, then R2\U would be a non-
empty open set, so Br(x) ⊆ R2\U for some x ∈ R2, r > 0. But then f(z) = 0 for infinitely many
z ∈ Br(x), a contradiction.
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Now, notice that Q[x, y] is countable, so we may write Q[x, y] = {fn}∞n=1. Then

Un = {x ∈ R : f(x) ̸= 0}

is open and dense in R2. By BCT V2,
⋂∞

n=1 Un is dense in R2. Thus, we have a dense set of points
that do not satisfy any rational polynomial. ⋄

This concludes our discussion of BCT. We move from point-set topology to algebraic topology.
What is our motivation for introducing algebra into the picture? One basic question is: given two
topological spaces X,Y , does there exist F : X → Y a homeomorphism? If there is, it suffices to
write down F , if you can. If not, how can we prove it? Algebraic topology says: to any topological
space, we associate an algebraic object A (X) such that

1. A is, in some sense, computable (i.e. amenable to computations);

2. if X is homeomorphic to Y , then A (X) ∼= A (Y ) (the algebraic structures are isomorphic).

Then it becomes feasible to show that A (X) ̸∼= A (Y ), so that X and Y are not homeomorphic.
There are various such objects we can study, such as fundamental groups, higher homotopy groups,
homology groups, cohomology groups, and much more. In this class, we will only study fundamental
groups.

Let us begin by introducing the notion of homotopy. Let X and Y be topological spaces. Fix
I = [0, 1] We call two continuous maps f, g : X → Y homotopic if there is a continuous function
F : X×I → Y such that F (x, 0) = f(x), F (x, 1) = g(x) for all x ∈ X. We say that F “continuously
deforms f to g”, and write f ≃ g, and call F a homotopy between f and g. If g is constant and
f ≃ g, we will call f null-homotopic.

Example. Let f, g : I → X be two paths. Then f ≃ g means that there is F : I × I → X such
that F (x, 0) = f(x), F (x, 1) = g(x) for all x ∈ [0, 1]. ⋄

Figure 2: an illustration of homotopy.

If f and p are paths with the same endpoints, i.e., f(0) = g(0) = x0 and f(1) = g(1) = x1, then
we call f, g path homotopic if there if a continuous map F : I × I → X such that{

F (s, 0) = f(s)

F (s, 1) = g(s)
and

{
F (0, t) = x0

F (1, t) = x1

for all s, t ∈ [0, 1]. In this case, for any t ∈ I, ft(s) := F (s, t) is also a path ft : I → X with initial
point at x0 and final point at x1. We write f ≃p g if f, g are path homotopic.
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Figure 3: An illustration of path homotopy.

Lecture 12 Exercises

1. The goal of this exercise is to prove the Uniform Boundedness Theorem (UBT) of functional
analysis:

Let {Tα}α∈I be a collection of linear operators from a normed linear space X to a complete
normed linear space Y (we call Y a Banach space).

The space of all such linear operators is a complete normed linear space, with norm

∥T∥ := sup
∥x∥X=1

∥Tx∥Y .

The UBT says that if for any x ∈ X we have supα∈I ∥Tαx∥Y = Mx < ∞, then there is M > 0
such that supα∈T ∥Tα∥ ≤ M . That is, the pointwise bound over all Tα implies a uniform
bound over X. The following steps will guide you in proving this theorem.

(a) Define
Sn := {x ∈ X : ∥Tαx∥ > n for some n ∈ N}.

Show that Sn is open. Hint: Observe that each T−1
α is bounded (hence continuous - you

may use this as a fact) and write Sn as the union of open sets.

(b) Show that if some Sn is not dense, then the theorem holds.

(c) Show that if every Sn is dense, then the theorem holds.

2. Use BCT V2 to show that Q is not a Gδ set.

32



Lecture 13: Homotopy ctd., Path homotopy

We continue our study of homotopy and path homotopy.

Remark. Suppose X is connected, Y separated, and f, g : X → Y are continuous with images in
different components of Y . Then f ̸≃ g.

Proof. If instead a homotopy F exists, then F (X × I) is connected and contains both f(X) and
g(X), a contradiction. □

Before continuing, we prove the so-called “Gluing lemma”, which will be quite useful in the following
results.

Lemma 4 (Gluing Lemma). Let X,Y be topological spaces and X =
⋃N

i=1Xi for closed subspaces
Xi. If f : X → Y is a map such that f |Xi is continuous for each i = 1, . . . , N , then f is continuous.

Proof. Given A ⊆ Y closed, f−1
i (A) := f−1(A)∩Xi is closed in Xi by continuity of f |Xi . But then

f−1
i (A) is closed in X. Then f−1(A) is a finite union of closed sets, hence closed. □

Our first basic result in our study of homotopy is that two maps being homotopic defined an
equivalence relation.

Lemma 5. Let X,Y be topological spaces. Then f ≃ g defines an equivalence relation on

{f : X → Y : f is continuous},

and f ≃p g an equivalence relation on

{f : X → Y : f is continuous, f(0) = x0, f(1) = x1}.

Proof. We must show reflexivity, symmetry, and transitivity.

(Reflexive) Let f be a given continuous function from X to Y and let F (x, t) := f(x) for all x ∈ X, t ∈ I.
Then F is a homotopy (the “constant” homotopy) between f and f . Thus, reflexivity holds.

(Symmetric) Let f, g be given and assume f ≃ g. Then there is F : X × I → Y such that F (x, 0) = f(x)
and F (x, 1) = g(x) for all x ∈ X. Then defining a homotopy G as G(x, t) = F (x, 1 − t) for
all x ∈ X, t ∈ I gives g ≃ f .

(Transitive) Let f, g, h be given and assume f ≃ g, g ≃ h. Pick a homotopy F between f and g and G
between g and h. Define

H(x, t) :=

{
F (x, 2t) t ∈ [0, 0.5],

G(x, 2t− 1) t ∈ [0.5, 1],

for all x ∈ X, t ∈ I. Then H is well-defined. Write

X × I = (X × [0, 0.5]) ∪ (X × [0.5, 1],

the union of two closed sets. Then by the Gluing lemma, H is continuous, hence a homotopy
between f and h. The path homotopy case is identical.

□
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Example. Let f, g : X → Rn be two continuous maps. Then f ≃ g by the homotopy

F (x, t) := (1− t)f(x) + tg(x)

for all x ∈ X, t ∈ I. The same F gives that two paths with the same initial and end points are
path homotopic.

More generally, if f, g : X → A for some convex set A ⊆ Rn, then the same F works. Note that a
convex set satisfies tx + (1 − t)y ∈ A for all x, y ∈ A, t ∈ [0, 1]. Now, homotopy is an equivalence
relation, so in fact all continuous maps into convex sets are null-homotopic. ⋄

We note a few definitions before showing more results related to path homotopy. Let X be a
topological space. First, for a given path f : I → X, the path class of f is the equivalence class of f ,
which we denote by [f ]. Second, if f, g : I → X are two paths such that f(0) = x0, f(1) = x1 = g(0),
and g(1) = x2, then the concatenation of f and g is h := f ∗ g defined by

h(s) :=

{
f(2s) s ∈ [0, 0.5],

g(2s− 1) s ∈ [0.5, 1].

Note that h is well-defined and continuous by the gluing lemma. We define [f ∗ g] := [f ] ∗ [g].
Remark. [f ∗ g] is well-defined.

Proof. Let F,G be homotopies between f, f ′ and g, g′, respectively. Let H be defined as

H(s, t) :=

{
F (2s, t) s ∈ [0, 0.5],

G(2s− 1, t) s ∈ [0.5, 1],
.

ThenH is well-defined, since F (1, t) = x1 = G(0, t), and continuous by the gluing lemma. Moreover,

H(0, t) = F (0, t) = x0, H(1, t) = G(1, t) = x2,

and
H(s, 0) = (f ∗ g)(s), H(s, 1) = (f ′ ∗ g′)(s),

for all t, s ∈ I. Hence, H is a homotopy between f ∗ g and f ′ ∗ g′. □

Thus, concatenation is compatible with the equivalence class structure for path homotopies. With
these definitions, we are ready to explore some of the basic properties.

Proposition 19.

(i) If [f ] ∗ ([g] ∗ [h]) is well-defined, then so is ([f ] ∗ [g]) ∗ [h]. That is, concatenation is associative
on path classes.

(ii) Given x ∈ X, let ex : I → X be the constant map with image x. Let f : I → X be a path
with f(0) = x0, f(1) = x1. Then [ex0 ] ∗ [f ] = [f ] and [f ] ∗ [ex1 ] = [f ].

(iii) Given a path f : I → X with f(0) = x0, f(1) = x1. Let f(s) = f(1− s) be the reverse path.
Then [f ] ∗ [f ] = [ex0 ] and [f ] ∗ [f ] = [ex1 ].
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Proof. (i) For [f ] ∗ ([g] ∗ [h]) to be defined, we need g(1) = h(0), f(1) = (g ∗ h)(0) = g(0), and
for ([f ] ∗ [g]) ∗ [h] to be defined we need h(0) = (f ∗ g)(1) = g(1) and f(1) = g(0), which are
the exact same conditions. To show that they are the same, we must produce a path homotopy
between them. Observe that the two paths are reparametrizations of the other. That is, we can
find φ : I → I such that

((f ∗ g) ∗ h) (t) = (f ∗ (g ∗ h) (φ(t)),

where φ is piecewise linear. Now, we saw that φ is path homotopic to the identity via

G(s, t) = (1− t)φ(s) + ts.

Composing G with f ∗ (g ∗ h) gives the homotopy.

(ii) Observe that, in general, if F is a path homotopy between f, g : I → X and k : X → Y is any
continuous map, then k◦F is a path homotopy between k◦f, k◦g. Also observe that if f, g : I → X
are two paths that can be concatenated, i.e. f(1) = g(0), and k : X → Y is a continuous map, then
k ◦ (f ∗ g) = (k ◦ f) ∗ (k ◦ g).

Now let e0 : I → I be the constant map with value 0 and id: I → I the identity. Then e0 ∗ id is
a path in I from 0 to 1. But I is convex, so there is a path homotopy G between id and e0 ∗ id.
Then f ◦G is a path homotopy in X between f ◦ id = f and

f ◦ (e0 ∗ id) = (f ◦ e0) ∗ (f ◦ id) = ex0 ∗ f.

Hence, [ex0 ] ∗ [f ] = [f ]. Similarly, let e1 : I → I be the constant path at 1. Then id ∗ e1 is path
homotopic to id, so

f ◦ (id ∗ e1) = (f ◦ id) ∗ (f ◦ e1) = f ∗ ex1

is path homotopic to f ◦ id = f . That is, [f ] ∗ [ex1 ] = [f ].

(iii) The reverse of id is id(s) = 1 − s, so id can be concatenated with id, and id ∗ id, e0 are two
paths beginning and ending at 0. Since I is convex, they are path homotopic. Let H be a path
homotopy between e0 and id ∗ id in I, so that f ◦H is a path homotopy in X between f ◦ e0 = ex0

and
f ◦ (id ∗ id) = f ∗ f.

Then [f ] ∗ [f ] = [ex0 ]. Repeating this argument with id ∗ id gives that [f ] ∗ [f ] = [ex1 ]. □

Those readers who are familiar with algebra may already have noticed that concatenation seems to
be putting some type of algebraic structure on the set of path classes. This observation motivates
our study of the so-called “fundamental groups”.
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Lecture 14: Fundamental groups, Functoriality

Let X be a topological space and fix x ∈ X. A path f : I → X is a loop if f(0) = f(1). The
fundamental group of X based at x is the set

π1(X,x) := {f : I → X : f is a loop with f(0) = x}/ ≃p .

With the operation [f ] ∗ [g], identity [ex], and inverse [f , we see that π1(X,x) is in fact a group.
The fundamental group is also called the first homotopy group.

Example. Let X ⊆ Rn be convex and fix x ∈ X. Then π1(X,x) = {1}, the trivial group. This
follows from our earlier observation that all paths with the same initial and end points are path
homotopic. ⋄

Our definition of the fundamental group requires us to fix a basepoint x. One question then is to
examine the algebraic relationship between the fundamental groups at distinct base points. Let
x0, x1 ∈ X be given and suppose α : I → X is a path with initial point x0 and end point x1. We
define a map

α̂ : π1(X,x0) −→ π1(X,x1)

[f ] 7−→ [α] ∗ [f ] ∗ [α]

(this is the “conjugation by α” map, sending f to its conjugate). Observe that if f is a loop at x0,
then so is α ∗ f ∗ α.
Proposition 20. The map α̂ defined above is an isomorphism of groups.

Proof. Let [f ], [g] ∈ π1(X,x0) be given. Then

α̂([f ]) ∗ α̂([g]) = ([α] ∗ [f ] ∗ [α]) ∗ ([α] ∗ [g] ∗ [α])
= [α] ∗ [f ] ∗ [g] ∗ [α]
= α̂([f ] ∗ [g]),

so that α̂ is a group homomorphism. Let β = α and define β̂ as the conjugation by β map. We
leave it as a short exercise to check that α̂ and β̂ are inverses, so that α̂ is an isomorphism. □

Corollary. If X is path connected, then the fundamental groups at any two points are isomorphic.
More generally, for any X and x0 ∈ X, we have

π1(X,x0) ∼= π1(Px0 , x0)
∼= π1(Px0 , x1)

for all x1 ∈ Px0 , the path component of x0 in X.

We call a topological space simply connected if X is path connected and π1(X,x0) is trivial for
some (hence all) x0 ∈ X.

Example. Rn, and any convex set A ⊆ Rn are simply connected. ⋄

We can now move on to our discussion of functoriality. As the word suggests, the following concepts
can be interpreted through the lens of category theory: the fundamental group is a functor from
the category of topological spaces along with a base point to the category of groups. However, we
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will not use this framework, and will stick to a non-category theoretic framework. Given two spaces
X,Y with base points x ∈ X, y ∈ Y , we write h : (X,x) → (Y, y) to mean a continuous mapping h
such that h(x) = y. In this case, if f : I → X is a loop at x in X, then h ◦ f is a loop at y in Y .
The homomorphism induced by h is the map

h∗ : π1(X,x) −→ π1(Y, y).

[f ] 7−→ [h ◦ f ]

Proposition 21. The map h∗ defined above is a well-defined group homomorphism.

Proof. Suppose f ≃p f ′ via a path homotopy F . Then h ◦ F is a path homotopy between h ◦ f
and h ◦ f ′, so [h ◦ f ] = [h ◦ f ′]. Hence, h∗ is well-defined. For given loops f, g, we have

h∗([f ] ∗ [g]) = h∗([f ∗ g]) = [h ◦ (f ∗ g)] = [(h ◦ f) ∗ (h ◦ g)] = h∗([f ]) ∗ h∗([g]).

□

Example. id : X → X induces the identity homomorphism id∗ = id: π1(X,x) → π1(X,x). ⋄

Lemma 6. Given h : (X,x) → (Y, y), k : (Y, y) → (Z, z), we have (k ◦ h)∗ = k∗ ◦ h∗.

Proof. Given h, k as in the lemma statement,

(k ◦ h)∗([f ]) = [(k ◦ h) ◦ f ] = [k ◦ (h ◦ f)] = k∗(h∗([f ])).

□

Proposition 22. If h : (X,x) → (Y, y) is a homeomorphism, then h∗ : π1(X,x) → π1(Y, y) is an
isomorphism of groups.

Proof. Let k : (Y, y) → (X,x) be the inverse of h. Then by the lemma, k∗ ◦h∗ and h∗ ◦ k∗ are both
the identity homomorphisms. Hence, h∗ is an isomorphism. □

This is an incredibly important result, as it tells us that computing the fundamental groups and
showing they are not isomorphic is sufficient to conclude the corresponding spaces are not homeo-
morphic. We can turn a topological question into an algebraic one!
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Lecture 15: Computing π1(X, x0), Retractions, Homotopy equivalence

We showed last time that if we can show two fundamental groups are not isomorphic, then the
corresponding map of topological spaces is not a homeomorphism. We still need to actually compute
the fundamental groups!

Lemma 7. Let (X, d) be a compact metric space and {Uα}α∈I an open cover of X. Then there
exists a Lebesgue number δ > 0 such that if A ⊆ X has diam(A) < δ, then A ⊆ Uα for some α ∈ I.

Proof. For each x ∈ X, choose α such that x ∈ Uα and rx > 0 such that B2rx(x) ⊆ Uα. We
know {Brx(x)}x∈X is an open cover of X, hence it admits a finite subcover X =

⋃N
i=1Brxi

(xi). Let
δ = min(rxi) and take A ⊆ X with diam(A) < δ. If x ∈ A, we may take x ∈ Brxi

(xi). Now let
y ∈ A. Then

d(y, xi) ≤ d(y, x) + d(x, xi) < δ + rxi ≤ 2rxi ,

so A ⊆ B2rxi
(xi) ⊆ Uα. □

We can now find the fundamental group of Sn for n ≥ 2.

Theorem 16. Let n ≥ 2. For any x ∈ Sn, the fundamental group π1(X,x) is trivial.

Proof. Let f : I → Sn be a loop at x. We proceed in two steps.

Step 1: Let g : I → Sn be another loop at x0 with g not surjective. We show f ≃p g. Let y ∈ Sn,
y ̸= x be given. Let B be an open set containing y but not x (such a B exists, as Sn is Hausdorff).
Up to shrinking B, B is homeomorphic to B1(0) ⊆ Rn, as Sn is an n-manifold. Let U = Sn\{y}.
Then U is open and Sn = U ∪ B, so that I = f−1(B) ∪ f−1(U) is an open cover of the compact
metric space I. By the lemma, there exists a Lebesgue number δ > 0 for this cover. Now let m ∈ N
be such that 1/m < δ and subdivide I as

I =
m⋃
k=1

[
k − 1

m
,
k

m
],

so that diam([(k − 1)/m, k/m]) < δ, and f([(k − 1)/m, k/m]) is a subset of B or U . If for some
k we have f(k/m) = y /∈ U , then f([(k − 1)/m, k/m]), f([k/m, (k + 1)/m]) ⊆ B, so we can just
remove k/m. After removing all possible k/m, we have written I =

⋃N
i=1 Ii where the

Ii := [ai, bi] ⊆ I

have disjoint interiors, f(Ii) is a subset of either B or U , and f(ai), f(bi) ̸= y. Now, B\{y} is
homeomorphic to B1(0)\{0}, which is path connected for n ≥ 2 (this follows from a similar proof
that Rn\{0} is path connected for n ≥ 2). For each 1 ≤ i ≤ N with f(Ii) ⊆ B, there exists a
path gi : Ii → B\{y} with gi(ai) = f(ai), gi(ai) = gi(bi). Since B is simply connected, f |Ii is path
homotopic to gi inside B. Let f̃ be equal to f on I\Ii and g on Ii. Then f ≃p f̃ in Sn. Repeat
this for all i and we get a new loop g at x with g ≃p f and y /∈ g(I).

Step 2: Now, use stereographic projection to conclude that Sn\{y} is simply connected, so f ≃p

g ≃p ex. Thus, π1(X,x) is trivial. □

Theorem 17. Let X,Y be topological spaces and x ∈ X, y ∈ Y basepoints. Then

π1(X × Y, (x, y)) ∼= π1(X,x)× π1(Y, y),
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where the set product on the right is the direct product of groups.

Proof. Given f : I → X × Y , we can write f as f(t) = (g(t), h(t)) where g : I → X, h : I → Y
are maps. Let p : X × Y → X, q : X × Y → Y be the natural projection maps, so that p ◦ f = g,
q ◦ f = h. Then f is continuous if and only if g, h are continuous, by the universal property of
products. Also, f is a loop at (x, y) is and only if g is a loop at x, h is a loop at y. Thus, a loop in
X×Y is the same as a pair of loops in X and Y . Similarly, if F : I×I → X×Y is a path homotopy
between two loops f, f ′ in X × Y at (x, y), then G = p ◦ F , H = q ◦ F are path homotopies in
X and Y between g, g′ and h, h′, respectively (where g, g′, h, h′ are defined as above). We can also
construct a path homotopy in F : I × I → X × Y from path homotopies G : I → X, H : I → Y .
Thus, we get a bijection

π1(X × Y, (x, y)) −→ π1(X,x)× π1(Y, y)

[f ] 7−→ [p ◦ f, q ◦ f ].

Since p◦ [f ∗f ′] = [p◦f ]∗ [p◦f ′], this is a homomorphism. Similarly, the inverse is a homomorphism.
Thus, this map is a group isomorphism. □

Example. Let x ∈ S1 be given. Then the n-torus Tn = S1 × · · · × S1︸ ︷︷ ︸
n times

satisfies

π1(Tn, y) = π1(S
1, x)× · · · × π1(S

1, x)︸ ︷︷ ︸
n times

,

where y = (x, . . . , x) ∈ Tn. ⋄

Let X be a topological space. A subspace A ⊆ X is called a retract of X if there is a continuous
map r : X → A such that r ◦ ι = idA (r(x) = x for all x ∈ A). We call r a retraction. Note that r
is surjective.

Example. Singletons in a topological space are always retracts. ⋄

Example. If X = Y × Z, then A = Y is an adjoint. ⋄

Example. Sn ⊆ Rn+1\{0} is a retract via r(x) = x/∥x∥. ⋄

Proposition 23. If A ⊆ X is a retract via r : X → A, then for any x ∈ A,

ι∗ : π1(A, x) −→ π1(X,x)

is injective, and
r∗ : π1(X,x) −→ π1(A, x)

is surjective.

Proof. We have r ◦ ι = idA, so functoriality gives r∗ ◦ ι∗ = id. Hence ι∗ is injective and r∗ is
surjective. □

Like topological equivalence via homeomorphism, there is a similar concept for homotopy. We call
topological spaces X,Y homotopy equivalent if there are continuous maps f : X → Y , g : Y → X
such that f ◦ g ≃ idY , g ◦ f ≃ idX . In this case, we write X ≃ Y .
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Remark. Being homotopy equivalent is an equivalence relation on topological spaces.

Example. For any n,m ∈ N, Rn ≃ Rm. To see this, just take the constant zero maps in both
directions and use the structure of Rn previously discussed. ⋄
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Lecture 16: Homotopy equivalence ctd.

A topological space X is called contractible if it is homotopy equivalent to a point. We call
A ⊆ X a deformation retract if there is a retraction r : X → A such that ι ◦ r ≃ idX .

Remark. Since r ◦ ιA = idA, ιA ◦ r ≃ idX , we see that any deformation retract A of X is
homotopy equivalent to X.

Equivalently, there exists a continuous map H : X × I → X such that H(x, 0) = x for all
x ∈ X, H(x, 1) ∈ A for all x ∈ X, and H(a, 1) = a for all a ∈ A. Given such an H, we take
r(x) := H(x, 1). If instead there exists such an H that also satisfies H(a, t) = a for all a ∈ A
and t ∈ I, we call A a strong deformation retract of X. This condition means that points of
A do not move along the homotopy.

Example. Let A = {a} ⊆ Rn. Then A is a strong deformation retract via H(x, t) =
(1− t)x+ ta. ⋄

Example. Let A = Sn as a subspace of Rn+1\{0} or B1(0)\{0}. Then A is a strong
deformation retract via

H(x, t) = (1− t)x+ t
x

∥x∥
.

⋄

Now, our goal in discussing homotopy equivalence is to show that any homotopically equiv-
alent spaces have isomorphic fundamental groups. We first need a lemma.

Lemma 8. Let h, k : X → Y be continuous maps which are homotopic via H : X× I → Y .
Given x0 ∈ X, let y0 = h(x0), y1 = k(x0), and take α : I → Y to be the path α(t) = H(x0, t).
Then the following diagram commutes:

π1(X, x0) π1(Y, y0)

π1(Y, y1)

h∗

k∗
α̂

Proof. Given a loop f : I → X at x0, we must show that

k ∗ [f ] = α̂(h ∗ [f ]),

or equivalently that
[α] ∗ [k ◦ f ] = [h ◦ f ] ∗ [α].

Define a continuous map F : I × I → Y by F (s, t) = H(f(s), t). Let

βi(s) = (s, i), γi(t) = (i, t)

for i = 1, 2. Then (F ◦ β0)(s) = H(f(s), 0) = (h ◦ f)(s) for all s ∈ I. Similarly,

(F ◦ β1)(s) = F (s, 1) = H(f(s), 1) = (k ◦ f)(s)
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(F ◦ γ0)(t) = H(f(0), t) = H(x0, t) = α(t)

(F ◦ γ1)(t) = H(f(1), t) = H(x0, t) = α(t)

for each s, t ∈ I. Now, β0 ∗ γ1 and γ0 ∗ β1 are paths in I × I with the same initial and end
point, so there is a path homotopy G : I× I → I× I between them. Then F ◦G : I× I → Y
is a path homotopy between

F ◦ (β0 ∗ γ1) = (F ◦ β0) ∗ (F ◦ γ1) = (h ◦ f) ∗ α

and
F ◦ (γ0 ∗ β1) = (F ◦ γ0) ∗ (F ◦ β1) = α ∗ (k ◦ f).

□

Theorem 18. If f : X → Y is a homotopy equivalence, then for any x ∈ X,

f∗ : π1(X, x) → π1(Y, f(x))

is a group isomorphism.

Proof. By assumption, there is a continuous map g : Y → X such that f ◦ g ≃ idY and
g ◦ f ≃ idX . We have group homomorphisms

π1(X, x)
f∗−→ π1(Y, f(x))

g∗−→ π1(X, g(f(x))
f∗−→ π1(Y, f(g(f(x)))).

Let h = g ◦ f , k = idX , and x0 = x so that applying the lemma gives that

π1(X, x) π1(X, x)

π1(X, g(f(x)))

(idX)∗

(g◦f)∗
α̂

is a commutative diagram. By functoriality, g∗ ◦ f∗ = α̂ is an isomorphism. Hence,
f∗ : π1(X, x) → π1(Y, f(x)) is injective, and g : π1(Y, f(x)) → π1(X, g(f(x))) is surjective.

Similarly, f ◦g ≃ idY , so by the lemma f∗◦g∗ = β̂, where β̂ : π1(Y, f(x)) → π1(Y, f(g(f(x))))
is an isomorphism. Then g∗ is injective, hence an isomorphism. But then f∗ = (g∗)

−1 ◦ α̂ is
an isomorphism. □
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Lecture 17: Covering spaces

We still do not know that π1(X, x) is not always trivial. To show this, we compute π1(S1, x).
However, this requires introducing another concept: covering spaces.

Let E,B be two topological spaces and p : E → B a continuous, surjective map. An open
set U ⊆ B is called evenly covered by p if

p−1(U) =
∐
α∈A

Vα

for some collection of open, disjoint sets Vα ⊆ E satisfying p|Vα : Vα → U is a homeomorphism
for each α ∈ A. We call p : E → B a covering space if p is continuous, surjective, and given
x ∈ B, there is an open set U ⊆ B containing x that is evenly covered by p.

Remark. If p : E → B is a covering space, then p is a local homeomorphism.

This remark is an immediate consequence of the definition above, as p(x) is in U for every
x ∈ E, and p|Vα : Vα → U is a homeomorphism where we choose α such that x ∈ Vα (using
that p−1(U) ⊆

∐
α Vα).

Example. Let B be any topological space and E =
∐N

i=1B the disjoint union of finitely
many copies of B. Then p : E → B with the obvious map is a covering space. ⋄

Example. Let p : R → S1 ⊆ R2 be defined by p(x) = (cos(2πx), sin(2πx)). We claim that
p is a covering space of S1. Let’s first cover S1 by

U ={(x1, x2) ∈ S1 : x1 > 0},
{(x1, x2) ∈ S1 : x1 < 0},
{(x1, x2) ∈ S1 : x2 > 0},
{(x1, x2) ∈ S1 : x2 < 0},

and show each of these is evenly covered by p. We will show this only for U . Observe that

p−1(U) = {x ∈ R : cos(2πx) > 0} =
∐
n∈Z

Vn,

where Vn = (n − 1/4, n + 1/4). Now, p|Vn
: Vn → U is injective, since sin(2πx) is strictly

monotone on Vn and surjective since p−1(x1, x2) = n+arcsin(x1)/(2π). Similarly, p|Vn : Vn →
U is surjective. Since Vn is compact, p|Vn

is a homeomorphism (see exercises). Hence, p|Vn

is also a homeomorphism for each n ∈ Z. ⋄

We now list two nice properties of covering spaces.

Proposition 24. Let p : E → B be a covering space. Then

(i) for any x ∈ B, p−1({x}) has the discrete topology,

(ii) p is an open map.
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(iii) if p′ : E ′ → B′ is another covering space, then p × p′ : E × E ′ → B × B′ is a covering
space.

Proof. (i) Let x ∈ B be given and choose an evenly covered open set U ⊆ B that contains x.
Write p−1(U) =

∐
α∈A Vα for some disjoint open sets Vα ⊆ E. Since p|Vα is a homeomorphism,

p−1({x}) ∩ Vα is a singleton that is open in p−1({x}). Hence, p−1({x}) has the discrete
topology.

(ii) Let V ⊆ E be open and let x ∈ p(V ). Then we can choose an open set U ⊆ B that
contains x such that p−1(U) =

∐
α∈A Vα, as in (i). Pick y ∈ V such that p(y) = x and β ∈ A

so that y ∈ Vβ. Then Vβ ∩ V is open in E, hence Vβ. But p|Vβ
is a homeomorphism, so

p(Vβ ∩ V ) is open in U . But then it is also open in B. Hence, p is an open map.

(iii) Given x ∈ B, x′ ∈ B′, choose evenly covered U ⊆ B, U ′ ⊆ B′ containing x, x′,
respectively. Write p−1(U) =

∐
α∈A Vα, p

−1(U ′) =
∐

β∈B V
′
β for some disjoint open Vα ⊆ B

and Vβ ⊆ B′. Then

(p× p′)−1(U × U ′) =
∐
α,β

Vα × V ′
β,

and (p× p′)|Vα×V ′
β
: Vα × V ′

β → U × U ′ is a homeomorphism. □

Example. Consider the 2-torus T2 = S1 × S1. The map p : R2 → T2 is a covering space.
This is also true in n-dimensions. ⋄

Lemma 9. If p : E → B is a covering space and B0 ⊆ B a subspace, then p|E0 : E0 → B0

is a covering space, where E0 = p−1(B0).

We leave the proof as an exercise.

Example. Let p : R2 → B, with B = S1 × S1, be the usual covering space. Let x ∈ S1 be
fixed and define B0 = (S1 × {x}) ∪ ({x} × S1). Note that B0 is homeomorphic to S1 ∨ S1.
Now fix y ∈ R with (cos(2πy), sin(2πy)) = x (y is unique modulo addition by Z). Then

E0 = p−1(B0) =

(⋃
n∈Z

R× {y + n}

)
∪

(⋃
n∈Z

{y + n} × R

)
,

which is an infinite grid. This follows from the preimage of x under the covering R → S1

being
⋃

n∈Z{y + n}. ⋄

Lecture 17 Exercises:

1. To be added.

2. Prove Lemma 9.
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Lecture 18: Liftings, π1(S1, x)

Now that we have an understanding of the basic properties of covering spaces, let us discuss the
important topic of lifting. Let p : E → B and f : X → B some continuous maps. A lifting of f is a
continuous map f̃ : X → E such that f = p ◦ f̃ .
Proposition 25 (Lifting of Paths). Let p : E → B be a covering space and e0 ∈ E and take
b0 ∈ B satisfying p(e0) = b0. Then given a path f : I → B with f(0) = b0, there is a unique lifting
f̃ : I → E such that f̃(0) = e0.

Proof. Cover B by {Uα}α∈A where each Uα is evenly covered by p. Then {f−1(Uα)}α∈A is an
open cover of I, so we can find a Lebesgue number δ > 0 for this cover. Choose a subdivision of I,
0 = s0 < s1 < . . . < sN = 1 with si+1 − s + i < δ, so that for all i, f([si, si+1]) ⊆ Uα(i) for some
α(i) ∈ A. Now we have f([s0, s1]) ⊆ Uα(0), p

−1(Uα(0)) =
∐

β∈I Vβ, and e0 ∈ p−1(Uα(0)). Without

loss of generality take e0 ∈ V0. Then define f̃(s := (p|V0)
−1(f(s)) for all s ∈ [s0, s1]. Then f̃ is

continuous from [s0, s1] → E and lifts f |[s0, s1], f̃(s0) = e0. We can repeat this process finitely
many times to obtain a lifting f̃ : I → E with f̃(0) = e0.

For uniqueness, suppose f̂ is another lifting of f with f̂(0) = e0. Then, using the above, we
have p(f̂([s0, s1])) = f([s0, s1]) ⊆ Uα(0). Thus, f̂([s0, s1]) ⊆

∐
β∈I Vβ and f̂(s0) = e0 ∈ V0. But

f̂([s0, s1]) is connected, so f̂([s0, s1]) ⊆ V0. Since p|V0 is a homeomorphism, for s ∈ [s0, s1] we have
f̂(s) = ((p|V0)

−1 ◦ f)(s) = f̃(s). Repeating this argument finitely many times gives f̂ = f̃ . □

Proposition 26 (Lifting of Homotopies). Let p : E → B be a covering space and p(e0) = b0.
Then every continuous map F : I × I → B with F (0, 0) = b0 has a unique lifting to a continuous
map F̃ : I × I → E with F̃ (0, 0) = e0. If F is a path homotopy, then so is F̃ .

Proof. By the “lifting of paths” proposition, F (t, 0) has a lifting F̃ (t, 0) and F (0, s) a lifting F̃ (0, s).
As before, we subdivide I as

0 = s0 < s1 < . . . < sN = 1, 0 = t0 < t1 < . . . < tM = 1,

and let Ii = [si−1, si], Jj = [tj−1, tj ] such that F (Ii × Jj) is contained in an evenly covered subset
of B. We start with I1 × J1. We know that F is already continuous on the connected set

A := (I1 × {0}) ∪ ({0} × J1).

Choose U ⊆ B open and evenly covered such that F (I1×J1) ⊆ U . Then we can take e0 = F̃ (0, 0) ∈
V0 and F̃ (A) ⊆

∐
β∈I Vβ, where p−1(U) =

∐
β∈I Vβ is the cover. Since F̃ (A) is connected, we have

F̃ (A) ⊆ V0. Since F̃ lifts F |A, for any x ∈ A, p(F̃ (x)) = F (x), so that F̃ (x) = (p|V0)
−1(F (x)),

which is continuous by the gluing lemma. We can repeat this for I2 × J1, etc. using lexicographic
ordering and let A be the union of all previous rectangles and the “bottom” and “left” sides of the
current rectangle. Note that A is connected. Repeating this, we get the lift F̃ : I × I → E with
F̃ (0, 0) = e0. Uniqueness of F̃ follows from square-by-square uniqueness.

Now if F is a path homotopy, then F (0, t) = b0 for all t ∈ I. Taking the lift F̃ , we see that F̃ (0, t) =
p−1(b0), where p

−1(b0) has the discrete topology. Now since I is connected, so is F̃ ({0}× I). Thus,
F̃ ({0} × I) is a singleton, which is necessarily b0. □

The following proposition shows that the lifts between two path homotopic maps are also path
homotopic.
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Proposition 27. Let p : E → B be a covering space and p(e0) = b0. Let f, g be two paths from
b0 to b1 in B and f̃ , g̃ their lifts to paths in E starting at e0. If f ≃p g, then f̃(1) = g̃(1).

Proof. Let F : I× I → B be a path homotopy between f, g with F (0, 0) = b0 and F̃ : I× I → E its
lift with F̃ (0, 0) = e0. Then F̃ is a path homotopy, so for any t ∈ I, F̃ (0, t) = e0 and F̃ (1, t) = e1,
for some e1 ∈ E. Now F̃ (s, 0) is a path in E starting at e0 which lifts F (s, 0) = f(s), so uniqueness
gives F̃ (s, 0) = f̃(s). Similarly, F̃ (s, 1) = g̃(s) for all s ∈ I, so that

f̃(1) = F̃ (1, 0) = e1 = F̃ (1, 1) = g̃(1).

□

We can now link our study of lifting to fundamental groups. Let p : E → B be a covering space
with p(e0) = b0. Given [f ] ∈ π1(B, b0), let f̃ be the lift of f starting at e0 and define a map
ϕ : π1(B, b0) → p−1(b0) by

ϕ([f ]) = f̃(1) ∈ p−1(b0) ⊆ E.

Then ϕ is a well-defined map we call the lifting correspondence.

Proposition 28. (i) If E is path connected, then ϕ is surjective.

(ii) If E is simply connected, then ϕ is bijective.

Proof. (i) Since E is path connected, given any e1 ∈ p−1(b0) there is f̃ : I → E with f̃(0) = e0,
f̃(1) = e1. Then f = p ◦ f̃ is a loop in B at b0 and ϕ([f ]) = e1.

(ii) Given [f ], [g] ∈ π1(B, b0) with ϕ([f ]) = ϕ([g]), let f̃ , g̃ be their lifts starting at e0. Then
f̃(1) = g̃(1) = ϕ([f ]). Since E is simply connected, f̃ ≃p g̃, so we can take a path homotopy F̃
between f̃ and g̃. Then F = p ◦ F̃ is a path homotopy between f and g. □

Finally, we find a non-trivial fundamental group!

Theorem 19. For any x ∈ S1, π1(S1, x) ∼= Z.

Proof. Take the usual covering space p : R → S1 with e0 = 0, b0 = p(e0) = (1, 0) ∈ S1. Then
p−1(b0) = Z ⊆ R. Now, we know that R is simply connected, so ϕ : π1(S1, b0) → Z is a bijection.
It remains to show ϕ is a group homomorphism. Let [f ], [g] ∈ π1(S1, b0) be given and suppose f̃ , g̃
are their lifts at 0 ∈ R. Let n = f̃(1), m = g̃(1) for some m,n ∈ Z. Then ϕ([f ]) = n, ϕ([g]) = m.
Let ĝ(s) = n+ g̃(s) for each s ∈ I. Then ĝ is another lift of g, since p(n+ x) = p(x) for all n ∈ Z,
x ∈ R. We have ĝ(0) = n, so that f̃ ∗ g̃ is a well-defined lift of f ∗ g starting at 0 and ending at
ĝ(1) = n+m. Hence, ϕ([f ] ∗ [g]) = ϕ([f ]) + ϕ([g]). □

Corollary. π1(Tn, x) ∼= Zn for each x ∈ Tn, n ∈ N.
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Lecture 19: Applications and Brouwer Fixed Point Theorem

Knowing the fundamental group of S1 has numerous consequences.

Theorem 20. There is no retraction of B1(0) ⊆ R2 onto S1.

Proof. If a retraction exists, then

ι∗ : π1(S1, x) ↪→ π1(B1(0))

is injective, a contradiction. □

Theorem 21 (Brouwer Fixed Point). Let B
2
= B1(0). Then any continuous map f : B

2 → B
2

has a fixed point.

Proof. Suppose instead f(x) ̸= x for all x ∈ B
2
. We define a retraction r : B

2 → S1 as follows.
Let γ(t) = (1− t)f(x) + tx be a line through x and f(x), where t ∈ R. Then γ intersects S1 in two
places, which we determine explicitly. Solving the quadratic equation

1 = ∥γ(t)∥2 = (γ(t), γ(t)) = (1− t)2∥f(x)∥2 + t2∥x∥2 + 2t(1− t)(f(x), x),

which simplifies to

t2(∥x∥2 + ∥f(x)∥2 − 2(f(x), x)) + 2t((f(x), x)− ∥f(x)∥2) + (∥f(x)∥2 − 1) = 0.

Choose the positive root t0 and define r(x) := γ(t0) for every x ∈ B
2
. Then r is continuous, since

γ is continuous, and t0 is a continuous function of x (because f(x) ̸= x for all x). Moreover, if
x ∈ S1, then t0 = 1, so r(x) = γ(1) = x. Thus, r is a retraction, a contradiction. □

Example. Let x ∈ Rn\{0} for n ≥ 1. We find π1(Rn\{0}, x). Define

f : Rn\{0} −→ Sn−1 × R

by

f(x) =

(
x

∥x∥
, log(∥x∥)

)
.

Then f is continuous, with continuous inverse g(y, t) := yet, so f is a homeomorphism. But then

π1(Rn\{0}, x) ∼= π1(Sn−1, p)× π1(R, 0) ∼= π1(Sn−1, p) ∼=

{
Z n=2,

0 otherwise.

⋄

Corollary. R2 is not homeomorphic to Rn.

Corollary. Let A ∈ R3×3 be a matrix. If all entries of A are positive, then A has a positive
eigenvector.

Proof. Let T : R3 → R3 be the linear map defined by A and let

B = {(x, y, z) ∈ R3 : x, y, z ≥ 0, x2 + y2 + z2 = 1}
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be the graph of
√
1− x2 − y2 over

B1 := {(x, y) ∈ R2 : x, y ≥ 0, x2 + y2 ≤ 1}.

Then B is homeomorphic to B1, and B1 is homeomorphic to B1(0) ⊆ R2. Let Φ: B → B1(0) be a
homeomorphism. For given x ∈ B, T (x) has all non-negative components, with one positive. Thus,
∥T (x)∥ > 0 and f : B → B defined by f(x) = T (x)/∥T (x)∥ is well-defined and continuous. Hence,

Φ ◦ f ◦ Φ−1 : B1(0) → B1(0)

is continuous. By the Brouwer fixed point theorem, there is x ∈ B1(0) so that Φ(f(Φ−1(x))) = x.
Define v = Φ−1(x) ∈ B, so that f(v) = v, and T (v) = ∥T (v)∥v. □

Proposition 29. Let X be a topological space and f : S1 → X a continuous map. Then the
following are equivalent:

(i) f is null-homotopic,

(ii) f extends to a continuous map f̃ : B
2 → X,

(iii) f∗ : π1(S1, x) → π1(X, f(x)) is the trivial homomorphism, where we take without loss x =
(1, 0).

Proof. “(a) =⇒ (b)” Choose F : S1 × I → X continuous such that F (x, 0) = f(x) and F (x, 1) = p
for some p ∈ X and all x ∈ I. An easy fact is that

π : S1 × I −→ B
2

(y, t) 7−→ (1− t)y

is a quotient map. Note that all fibres π−1(x), x ̸= 0, are singletons, and π−1(0) = S1×{1}. Since F
is constant on S1×{1}, there is (by a previous lemma) F̃ : B

2 → X continuous such that F = F̃ ◦π.
Now, for any x ∈ S1, x = π(x, 0), so

F̃ (x) = F̃ (π(x, 0)) = F (x, 0) = f(x).

Thus, F̃ is the desired extension.

“(b) =⇒ (c)” Let ι : S1 → B
2
be the inclusion map, so f = f̃ ◦ ι. Hence f∗ = f̃∗ ◦ ι∗. But

ι∗ : π1(S
1, x) → π1(B

2
, x) = 0

is the trivial homeomorphism, so so is f∗.

“(c) =⇒ (a)” Let p : R → S1 be the usual covering map and define p0 := p|I , a loop in S1 at x. We
know that [p0] is a generator of π1(S1, x). Since f ∗ [p0] = 0 in π1(X, f(x)), the loop g = f ◦ p0 in
X at f(x) is path homotopic to ef(x) via some G : I × I → X. We have the quotient map

p0 × id : I × I → S1 × I

which identifies {0} × I and {1} × I with {x} × I ⊆ S1 × I. Since

G(0, t) = G(1, t) = f(x)
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for all t ∈ I, G descends to a continuous map H : S1 × I → X, and for all z ∈ S1,

H(z, 0) = H(p0(y), 0) = G(y, 0) = g(y) = f(p0(y)) = f(z),

and
H(z, 1) = H(p0(y), 1) = G(y, 1) = f(x),

which is constant. Thus, f is null-homotopic.

□

Lecture 19 Exercises

1. Check that the map p0 × id defined in Proposition 29 is indeed a quotient map.
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Lecture 20: More tools for computing π1(X, x)

We begin with a few more properties of covering spaces and liftings.

Proposition 30. Let p : E → B be a covering space and p(e0) = b0.

(i) p∗ : π1(E, e0) → π1(B, b0) is injective.

(ii) Let H := p∗(π1(E, e0)) ⊆ π1(B, b0). Then the lifting correspondence ϕ induces an injective
map Φ: π1(B, b0)/H → p−1(b0). If E is path-connected, then Φ is a bijection.

(iii) Let f : I → B be a loop at b0 and f̃ : I → E its lift to a path in E beginning at e0. Then f̃
is a loop if and only if [f ] ∈ H.

Remark. We note thatH ⊆ π1(B, b0) need not be a normal subgroup of π1(B, b0). By π1(B, b0)/H,
we just mean the set of left H cosets.

Proof. (i) Let h : I → E be a loop at e0 with p∗([h]) = e, the identity. Let F be a path homotopy
between p ◦ h and eb0 . Lift F to F̃ : I × I → E with F̃ (0, 0) = e0, a path homotopy between h (the
lift of p ◦ h) and ee0 (the lift of eb0). Then [h] = e in π1(E, e0).

(ii) Given f, g : I → B two loops at b0, we can lift them to paths f̃ , g̃ : I → E beginning at e0.
By definition, ϕ([f ]) = f̃(1), ϕ([g]) = g̃(1). We want to show that ϕ([f ]) = ϕ([g]) if and only if
[f ] ∈ H ∗ [g] (meaning [f ] = [g] in π1(B, b0)/H). First suppose there is some [h] ∈ H such that
[f ] = [h ∗ g]. By definition, h = p ◦ h̃ for a loop h̃ at e0 in E. Then h̃ ∗ g̃ is a lift of h ◦ g starting at
e0, and similarly f̃ is too. Since [f ] = [h ∗ g], uniqueness gives that f̃(1) = (h̃ ∗ g̃)(1) = g̃(1).

Conversely, let f̃(1) = g̃(1), so that h̃ := f̃ ∗ g̃ is a loop in E at e0. Moreover, [h̃ ∗ g̃] = [f̃ ], so
there is a path homotopy F : I × I → E between h̃ ∗ g̃ and f̃ . Then p ◦F is a path homotopy in B
between h ∗ g and f , where h = p ◦ h̃, and [h] ∈ H by definition. Thus, [f ] = [h] ∗ [g] ∈ H ∗ [g].

Lastly, if E is path connected, then ϕ is surjective, so the induced map is also (ϕ is just the
projection map composed with Φ).

(iii) Let g = eb0 . Then ϕ([g]) = e0. By (ii), ϕ([f ]) = ϕ([g]) = e0 (i.e. f is a loop) if and only
if [f ] ∈ H ∗ [g] = H. □

Theorem 22. Let X = U ∪ V where U, V ⊆ X are open and U ∩ V is path connected. Let
x0 ∈ U ∩ V and let i : U → X, j : V → X be the inclusion maps. Then the images of

i∗ : π1(U, x0) → π1(X,x0), j∗ : π1(V, x0) → π1(X,x0)

generate π1(X,x0). That is, any [g] ∈ π1(X,x0) can be written as [g] = [g1] ∗ · · · ∗ [gk] where each
[gl] lies in one of the images (is a loop in U or V at x0).

Proof. Let [f ] ∈ π1(X,x0). Then applying the Lebesgue lemma to {f−1(U), f−1(V )}, we can find

0 = a0 < a1 < · · · < aN = 1

such that f([ak−1, ak]) is contained in U or V for each k = 1, . . . , N . Now given k = 0, . . . , N ,
check whether f(ak) ∈ U ∩ V . This is true for k = 0, N , since f is a loop at x0 ∈ U ∩ V .
If, say, f(ak) /∈ U ∩ V , then since f(ak) ∈ U ∪ V , we may assume that f(ak) /∈ V , so that
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f([ak−1, ak]), f([ak, ak+1]) ⊆ U . Thus, we can just remove ak. Repeating this process finitely many
times, we may assume that f(ak) ∈ U ∩ V for every k = 0, . . . , N . Now for k = 1, . . . , N , define

fk(t) := f((1− t)ak−1 + tak),

so that fk : I → X is a path contained in U or V , and f1 ∗ · · · ∗ fN is a reparametrization of f .
Thus,

[f ] = [f1] ∗ · · · ∗ [fN ].

Now for each k = 1, . . . , N − 1, choose a path αk : I → U ∩ V with αk(0) = x0, αk(1) = f(ak). Let

α0 = αN = ex0 .

Finally, define gk := αk−1 ∗ fk ∗ αk, a loop in X at x0 contained in either U or V , and

[g1] ∗ · · · ∗ [gN ] = [f1] ∗ · · · ∗ [fN ] = [f ].

□

Corollary. Let X = U ∪ V for U, V open and simply connected. If U ∩ V is non-empty and path
connected, then X is simply connected.

Proof. From a long time ago, know that X is path connected. Now if x0 ∈ U ∩ V , observe that
π1(U, x0) and π1(V, x0) are trivial. Since the images of the inclusions generate π1(X,x0), we also
have that π1(X,x0) is trivial. □

Example. We can show again that π1(Sn, x) is trivial for n ≥ 2. Write Sn = U ∪ V where U =
Sn\{N} and V = Sn\{S}. Then U and V are homeomorphic to Rn via stereographic projection.
Moreover, U ∩V is homeomorphic to Rn\{0} via stereographic projection, a path connected space.
By the corollary, π1(Sn, x) is trivial. ⋄

51



Lecture 21: Algebra review

Before introducing the main theorem of this section, we need to review some algebra preliminaries
(without proofs - see textbooks). Given a collection {Gα}α∈A of groups, there are three different
products we can define.

1. Cartesian Product: ∏
α∈A

Gα = {(gα)α∈A : gα ∈ Gα ∀α ∈ A},

where the group operation is component-wise products.

2. Direct Product:⊕
α∈A

Gα = {(gα)α∈A : gα ∈ Gα ∀α ∈ A, and gα = idα for all but finitely many α},

where the group operation is component-wise products.

Remark. If A is finite, the Cartesian and direct products agree, but they differ for infinite A.

There is an issue with the above two products. In both, different factors Gα, Gβ (α ̸= β) always
commute! Thus, need the third type of product, the free product :

3. Free Product:

∗
α∈A

Gα = {g1 . . . gm : g1 . . . gm is a reduced word of finite length m ∈ N}.

Here, we define a reduced word to be g1 . . . gm where for every 1 ≤ i ≤ m there is αi ∈ A such
that gi ∈ Gαi\{eαi} and αi ̸= αi+1 for each i (i.e. gi and gi+1 are in different groups). For m = 0,
we have the empty word, which is the identity element. Also note that any unreduced word can
be simplified by writing adjacent letters in the same Gα as one letter, and removing the identity
element. For the free product to be a group, we need to define a group operation. We will take
the group operation to be juxtaposition then applying simplification: for g1 . . . gm, h1 . . . hn in
∗α∈AGα, define

(g1 . . . gn) · (h1 . . . hn) := g1 . . . gnh1 . . . hn

where we simplify after taking juxtaposing.

Theorem 23. The set ∗α∈AGα with the juxtaposition plus simplification operation is a group.

Proof. The only non-trivial property to check is associativity. Let W be the set of all reduced
words of finite length. Given g ∈ Gα, α ∈ A, define a map

Lg : W −→ W

g1 . . . gm 7−→ simplification of gg1 . . . gn.

Then Lg ◦ Lg′ = Lgg′ and Leα is the identity, where g, g′ ∈ Gα and eα is the identity in Gα. Thus,
Lg is invertible with inverse Lg−1 . Hence, if P (W ) is the set of permutations of W , then Lg ∈ P (W )
and P (W ) is a group. Moreover, Gα → P (W ) where g 7→ Lg is a group homomorphism. Now
define

L : W −→ P (W )
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g1 . . . gn 7−→ Lg1 ◦ . . . ◦ Lgn ,

an injective map of sets, since (Lg1 ◦ . . . ◦ Lgn)(∅) = g1 . . . gn. Thus, L(W ) ⊆ P (W ) and the
product on W (juxtaposition plus simplification) via L becomes composition. But composition is
associative in P (W ), so the product in W must be too. □

Example. Let Gα = Z for all α ∈ A. Then ∗α∈A Z is called the free group with A generators. ⋄

Example. Z ∗ Z = {reduced words in a, b and their powers}. e.g. a5b2a−1b9ab−2. ⋄

Example. Z/2Z ∗ Z/2Z = {reduced words in a, b without their powers}. e.g. ab, bababa. ⋄

Given a collection of groups {Gα}α∈A, there is a natural inclusion map ια : Gα → ∗α∈AGα, where
g ̸= eα is mapped to the word “g” and eα is mapped to the empty word. Using ια, we often identify
Gα with ια(Gα).

Theorem 24 (Universal Property for Free Groups). Given a collection of groups {Gα}α∈A and
group homomorphisms φα : Gα → H, there is a unique homomorphism φ : ∗α∈AGα → H such
that φ ◦ ια = φα for every α ∈ A.

Proof. Uniqueness: If φ exists, then given gi ∈ Gαi , we have

φ(g1 . . . gn) = φ(g1) . . . φ(gn) = φα1(g1) . . . φαn(gn),

which is uniquely determined.

Existence: Define φ by φ(∅) = eH and φ(g1 . . . gn) = φα1(g1) . . . φαn(gn). Then it is quick check
to see that φ is a group homomorphism. □

Example. Let G1, G2 be two groups and φi : Gi → G1 × G2 be the natural inclusions, i = 1, 2.
Then the proposition above gives a homomorphism φ : G1 ∗ G2 → G1 × G2 that is surjective. To
see this, let (g, h) ∈ G1 ×G2 be given. Then{

(g, e) = φ1(g) = φ(ι1(g)),

(e, h) = φ2(h) = φ(ι2(h)),

so that
(g, h) = (g, e)(e, h) = φ(ι1(g)ι2(h)).

⋄

Before moving back into the realm of topology, we must recall that a normal subgroup H ⊆ G of a
group G is a subgroup satisfying ghg−1 ∈ H for all h ∈ H and g ∈ G. We often write H ≤ G to
mean H is a normal subgroup of G. Given a subset S ⊆ G, we call the set

N :=
⋂

H ≤ G
S ⊆ H

H

the normal subgroup generated by S.
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Lecture 22: Seifert-Van Kampen Theorem

Now that we have an understanding of the important algebra preliminaries, let us resume our
discussion of algebraic topology. Let X be a topological space and {Uα}α∈A be an open cover of
X with x0 ∈

⋂
α∈A Uα and Uα ∩ Uβ is path connected for all α, β ∈ A. We have the inclusions

ια : Uα → X, and the induced homomorphisms

jα := (ια)∗ : π1(Uα, x0) → π1(X,x).

By the universal property for free groups, there exists a homomorphism

Φ: ∗
α∈A

π1(Uα, x0) → π1(X,x0)

which extends the jα. The same proof as in the case of two Uα shows that the images of all jα
together generate π1(X,x0). Thus, given [f ] ∈ π1(X,x0), we can write [f ] = [g1] ∗ . . . ∗ [gN ] where
for any 1 ≤ i ≤ N there is α(i) ∈ A such that [gi] ∈ im(jα(i)). Hence, [gi] ∈ im(Φ) for all 1 ≤ i ≤ N .
But Φ is a group homomorphism, so [f ] ∈ im(Φ) – Φ is surjective!

We note that Φ is, in general, not injective: if ιαβ : π1(Uα ∩ Uβ, x0) → π1(Uα, x0) is the homomor-
phism induced by the inclusion Uα ∩ Uβ ↪→ Uα, then the diagram

X

Uβ

Uα ∩ Uβ

Uα

commutes. Now by functoriality, jα ◦ iαβ = jβ ◦ iβα, so for any [γ] ∈ π1(Uα ∩ Uβ, x),

Φ(iαβ([γ])) = Φ(iβα([γ])),

or iαβ([γ])(iβα([γ]))
−1 ∈ ker(Φ).

Theorem 25 (Seifert-Van Kampen). Let X be a topological space, {Uα}α∈A an open cover of X
with x0 ∈

⋂
α∈A Uα, Uα ∩Uβ and Uα ∩Uβ ∩Uγ path connected for all α, β, γ ∈ A. Then the kernel

of Φ: ∗α∈A π1(Uα, x0) → π1(X,x0) is the normal subgroup N generated by

{iαβ([γ])(iβα([γ])−1 : [γ] ∈ π1(Uα ∩ Uβ, x0), α ̸= β}.

In particular, Φ induces a group isomorphism

π1(X,x0) ∼=
(
∗
α∈A

π1(Uα, x0)

)
/N.

The proof is long, so is omitted here.

Corollary. Let X =
⋃

α∈A Uα for some Uα ⊆ X open, Uα ∩ Uβ ∩ Uγ path connected for all
α, β, γ ∈ A, and let x0 ∈

⋂
α∈A Uα. If Uα ∩ Uβ is simply connected for every α ̸= β, then

π1(X,x0) ∼= ∗
α∈A

π1(Uα, x0).
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Indeed, for Uα∩Uβ simply connected, the maps iαβ and iβα are immediately trivial, so N is trivial.

Corollary. Let {(Xα, xα)}α∈A be pointed spaces such that for any α ∈ A there is an open set
Wα ⊆ Xα that contains xα and xα is a deformation retract of Wα. Then

π1(
∨
α∈A

Xα, x0) ∼= ∗
α∈A

π1(Xα, xα),

where x0 is the image of the xα.

Proof. For each α ∈ A, define Uα = Xα ∨
∨

β ̸=αWβ, which is an open subset of
∨

γ∈AXγ . Then
Xα ⊆ Uα, and since Wβ deformation retracts onto xβ, we have that Xα is a deformation retract
of Uα. Thus, π1(Uα, x0) ∼= π1(Xα, xα). Moreover, the intersection of two or more Uα is equal to∨

γ∈AWγ , which deformation retracts onto {x0}, hence these are simply connected. By the above
corollary, we have

π1(
∨
α∈A

Xα, x0) ∼= ∗
α∈A

π1(Xα, xα).

□

Example. Let X = S1 ∨ S1 and let x0 ∈ S1 be a basepoint. Then given y ∈ S1, y ̸= x0, we have
S1\{y} is homeomorphic to R and contains x0. Let Φ: S1\{y} → R be a homeomorphism. Then

Φ−1((Φ(x0)− 1,Φ(x0) + 1))

is an open neighbourhood of x0 in S1, which deformation retracts onto x0. By the above corollary,

π1(S1 ∨ S1, x0) ∼= Z× Z.

Extending this argument gives, more generally,

π1(
∨
α∈A

S1, x0) ∼= ∗
α∈A

Z.

⋄

Example (n-fold dunce cap). For n ≥ 2, define a space X by taking B
2 ⊆ R2 and subdividing

S1 = ∂B
2
into n equal arcs and identifying them all (respecting orientation): ⋄

For n ≥ 3, one can also think of these as polygons.

Fix a basepoint x0 ∈ X, the image of some point in B2, and let U, V be defined as:
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Then we see that X = U ∪ V , U is convex hence contractible, V deformation retracts onto q(S1)
where q : B

2 → X is the usual quotient map, so V is homotopy equivalent to S1. Moreover, U ∩ V
is also homotopy equivalent to S1.

Let γ be a loop in U ∩ V , which is homotopic to the loop in S1 traversing S1 once clockwise. Let σ
be the composition of q with one arc on the partitioned S1. Then [σ] generates π1(V, x0) ∼= Z and
[γ] generated π1(U ∩ V, x0) ∼= Z. Let

i : π1(U ∩ V, x0) → π1(V, x0), j : π1(U ∩ V, x0) → π1(U, x0)

be the group homomorphisms induced by the inclusion maps. Then j is trivial, while i([γ]) is the
homotopy class of γ inside V , i.e. the class of the image of the loop that traverses S1 once clockwise.
In V , this is equal to

[σ] ∗ · · · ∗ [σ]︸ ︷︷ ︸
n times

= n[σ].

Thus, i([γ])(j([γ])−1 = n[σ]. Hence, N ⊆ π1(U, x0) ∗ π1(V, x0) is the normal subgroup generated
by n[σ]. By Seifert-van Kampen, we see that

π1(X,x0) ∼= (π1(U, x0) ∗ π1(V, x0))/N ∼= Z/nZ.

Remark (Fundamental Group of the Projective Plane). RP2 is homeomorphic to the 2-fold dunce
cap, so π1(RP2, x0) ∼= Z/2Z. Indeed,

RP2 = (R2\{0})/(p ∼ λp) = S2/(p ∼ −p),

where λ ∈ R\{0}. Now, S2/(p ∼ −p) is equivalent the upper hemisphere with no identification plus
the equator with the p ∼ −p identification, so up to homeomorphism this is the 2-fold dunce cap.
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Lecture 23: Covering Spaces ctd.

We resume our study of covering spaces.

Theorem 26 (Lifting Theorem). Let p : E → B be a covering space with p(e0) = b0 and X a
path connected and locally path connected space. Suppose f : X → B is a continuous map with
f(x0) = b0. Then there exists a continuous map f̃ : X → E such that f = p ◦ f̃ (i.e. f lifts to f̃)
and f̃(x0) = e0. if and only if f∗π1(X,x0) ⊆ p∗π1(E, e0). If this holds, then f̃ is unique.

Proof. First suppose that such a f̃ exists. Since f = p ◦ f̃ , functoriality gives that f∗ = p∗ ◦ f̃∗.
Thus,

f∗π1(X,x0) = p∗(f̃∗π1(X,x0)) ⊆ p∗π1(E, e0).

For uniqueness, fix x ∈ X and choose a path α : I → X with α(0) = x0, α(1) = x. Then f◦α : I → B
is a path starting at b0. Let γ : I → E be its lift starting at e0, i.e. p ◦ γ = f ◦α. Then f̃ ◦α is also
a lift of f ◦ α starting at e0, so by uniqueness we have γ = f̃ ◦ α. Hence, f̃(x) = f̃(α(1)) = γ(1),
which is uniquely determined.

Conversely, let x ∈ X be given and choose a path α : I → X with α(0) = x0, α(1) = x. Suppose
γ : I → E is the lift of f ◦ α starting at e0 and define f̃(x) = γ(1). We need to show that f̃ is
well-defined and continuous.

Let β : I → X be another path from x0 to x and β its reverse path. Lift f ◦ β : I → B to a path
δ : I → E with δ(0) = γ(1), so that δ ∗ γ makes sense and is a lift of

(p ◦ γ) ∗ (p ◦ δ) = (f ◦ α) ∗ (f ◦ β) = f ◦ (α ∗ β).

Thus, [f ◦ (α ∗ β)] ∈ im(p∗). We proved before that for such a loop, the lift (which is γ ∗ δ) is a
loop in E. Thus, δ(1) = γ(0) = e0. But then δ, which is a lift of f ◦ β, starts at e0 and ends at
δ(1) = γ(1). Hence, f̃(x) = δ(1), so indeed f̃ is well-defined.

We show f̃ is continuous. Let V ⊆ E be an open set containing f̃(x). We find an open set W ⊆ X
so that f̃(W ) ⊆ V . Let U ⊆ B be an evenly covered open set containing f(x), p−1(U) =

∐
α∈A Vα

for some collection of open disjoint Vα ⊆ E with p|Vα a homeomorphism. Let us take f̃(x) ∈ V0,
and up to shrinking U , we may assume V0 ⊆ V . Since f is continuous, x ∈ f−1(U) ⊆ X is open,
so by local path connectedness there is path connected open set W ⊆ f−1(U) containing x. Let
us show that f̃(W ) ⊆ V0. Given y ∈ W , take β : I → W a path starting at x and ending at y.
Then f̃(y) is exactly the endpoint of the lift of f ◦ (α ∗ β) starting at e0. Suppose γ is the lift of
f ◦ α, as before, then (f ◦ β)(I) ⊆ f(W ) ⊆ U , so δ := (p|V0)

−1 ◦ f ◦ β is a lift of f ◦ β starting at
f̃(x)., δ(I) ⊆ V0. Thus, γ ∗ δ is the lift of f ◦ (α ∗ β) starting at e0 and ending at δ(1) ∈ V0. Thus,
f̃(y) ∈ V0, as desired. □

Given p : E → B a covering space, we call another covering space p′ : E′ → B equivalent to p if
there is a homeomorphism h : E → E′ such that p = p′ ◦ h. Being equivalent is an equivalence
relation on covering spaces.

Example. Define a map S1 → S1 by z 7→ zn. Then in general this is not an equivalence of S1. ⋄

Theorem 27. Let p : E → B, p′ : E′ → B be covering spaces with p(e0) = b0 = p(e′0), where
E,E′ are path connected and locally path connected. Then there is an equivalence h : E → E′ with
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h(e0) = e′0 if and only if
H := p∗π1(E, e0), H ′ := p′∗π1(E

′, e′0)

are equal (H = H ′). If such an h exists, then it is unique.

Proof. By the topological invariance of π1, h∗π1(E, e0) = π1(E
′, e′0), so

H = p′∗h∗π1(E, e0) = p′∗π1(E
′
0, e

′
0) = H ′.

Conversely, if p∗π1(E, e0) = p′∗π1(E
′, e′0), then by the lifting theorem there is a lift h : E → E′ with

h(e0) = e′0 and p′ ◦ h = p. Similarly, there is a lift k : E′ → E with k(e′0) = e0 and p ◦ k = p′. Then
k ◦ h : E → E satisfies

p ◦ k ◦ h = p′ ◦ h = p,

so k ◦h is a lifting of p and (k ◦h)(e0) = e0. By uniqueness of liftings, k ◦h = idE , and similarly we
have h◦k = idE′ . Thus, h is an equivalence. Uniqueness is an immediate consequence of uniqueness
in the lifting theorem. □

What if we discard basepoints? Let G be a group, and H1, H2 two subgroups of G. We say H1, H2

are conjugate if there is g ∈ G so that gH1g
−1 = H2. This is an equivalence relation.

Lemma 10. Let p : E → B be a covering space with p(e0) = b0 = p(e1), where E is path connected
and locally path connected. Let

H0 = p∗π1(E, e0), H1 = p∗π1(E, e1)

(these are subgroups of π1(B, b0)).

(a) H0 and H1 are conjugate. More precisely, if γ : I → E is a loop beginning at e0 and ending
at e1 and α := p ◦ γ is a loop in B at b0, then [α] ∗H1 ∗ [α] = H0.

(b) Given H ⊆ π1(B, b0) a subgroup conjugate to H0, then there exists e2 ∈ p−1(b0) such
that p∗π1(E, e2) = H.

Proof. (a) Given [h] ∈ H1, we have [h] = p∗[h̃] for some loop h̃ at e1. Let k̃ = γ ∗ h̃ ∗ γ, which is a
loop in E at e0. Then

p∗[k̃] = [p ◦ γ] ∗ [p ◦ k̃] ∗ [p ◦ γ] = [α] ∗ [h] ∗ [α] ∈ H0.

Thus, [α] ∗H1 ∗ [α] ⊆ H0. Reversing the roles of e0 and e1 gives the other direction.

(b) By assumption, there is a loop α : I → B a loop at b0 such that H0 = [α] ∗H ∗ [α]. Let γ be
the lift of α to a path in E starting at e0 and let e2 := γ(1). By (a),

[α] ∗ p∗π1(E, e2) ∗ [α] = H0 = [α] ∗H ∗ [α],

so the claim holds. □

Theorem 28. Let p : E → B, p′ : E′ → B be two covering spaces with p(e0) = b0 = p′(e′0), where
E,E′ are path connected and locally path connected. Then p is equivalent to p′ if and only if
p∗π1(E, e0) and p′∗π1(E

′, e′0) are conjugate subgroups of π1(B, b0).
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Proof. Let h : E → E′ be an equivalence and let e′1 := h(e0). Let

H0 = p∗π1(E, e0), H ′
0 = p′∗π1(E

′, e′0), H ′
1 = p′∗π1(E

′, e′1).

By the above theorem, H0 = H ′
1, and by the lemma, H ′

0 is conjugate to H ′
1.

Conversely, if H0 and H ′
0 are conjugate, then the lemma gives e1 ∈ E with p∗π1(E, e1) = H ′

0 and
p(e1) = b0. By the theorem, p and p′ are equivalent. □

Example. Let B = S1. Then π1(B, b0) ∼= Z is abelian, so any two conjugate subgroups are equal.
In particular, any two coverings of S1 are equivalent if and only if their corresponding subgroups
are equal. ⋄

Recall that any subgroup of Z is of the form nZ for some positive integer n. Thus, every covering
space p : E → S1 with E path connected and locally path connected corresponds to nZ for some
n ∈ N.
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Lectures 24 & 25: Existence of covering spaces

Given a pointed space (B, b0) and H ⊆ π1(B, b0) a subgroup, we wish to determine if a covering
space p : E → B with E path connected and locally path connected such that p∗π1(E, e0) = H
exists. If such a map exists, then B is path connected and locally path connected. Moreover, if H
is trivial, since p∗ is injective, we may assume E is simply connected.

Lemma 11. Let p : E → B be a covering space with E simply connected. Then for any b ∈ B
there is an open set U ⊆ B containing b such that

ι∗ : π1(U, b) −→ π1(B, b)

is the trivial homomorphism (i.e. any loop in U at b is path-homotopic to eb inside B).

Proof. Let b ∈ U ⊆ B be an open set evenly covered by p, with p−1(U) =
∐

α∈A Vα. Choose α ∈ A
and e0 ∈ Vα with p(e) = b. Given a loop f in U at b, f̃ := (p|Vα)

−1 ◦ f is a loop in Vα based at e.
But E is simply connected, so there is F : I × I → E a path homotopy between f̃ and ee. Then
p ◦ F is a path homotopy between f = p ◦ f̃ and eb. □

We say that a space B is semilocally simply connected if for any b ∈ B there is an open set U ⊆ B
containing b such that

ι∗ : π1(U, b) −→ π1(B, b)

is the trivial homomorphism.

Theorem 29 (Classification of covering spaces). Let B be path connected, locally path connected,
and semilocally simply connected. Fix b0 ∈ B and let H ⊆ π1(B, b0) be a subgroup. Then there
exists a covering space p : E → B with E path connected and locally path connected, e0 ∈ E
with p(e0) = b0, and p∗π1(E, e0) = H. Moreover, (E, e0) is unique up to base point preserving
equivalence.

Proof. Define
P := {paths γ : I → B with γ(0) = b0}.

For α, β ∈ P, define an equivalence relation by α ∼ β if and only if α(1) = β(1) and [α ∗ β] ∈ H.
Denote by α# the equivalence class of α ∈ P and define E := P/ ∼ and p : E → B with α# 7→ α(1).
Then p is a well-defined mapping of sets. Morever, p is surjective, since B is path connected.

Observation 1: if α, β ∈ P have α(1) = β(1), and α ≃p β, then α ∗β ≃p eb0 . Hence [α ∗β] = id ∈
H, and so α# = β#.

Observation 2: Let α, β ∈ P satisfy α# = β#. Then given any path δ : I → B with δ(0) = α(1),
we have α ∗ δ and β ∗ δ end at the same end point and

[α ∗ δ ∗ (β ∗ δ] = [α ∗ β] ∈ H.

Hence (α ∗ δ)# = (β ∗ δ)#.

We define a topology on E. Given α ∈ P, choose an open and path connected set U ⊆ B containing
α(1). Define

B(U,α) := {(α ∗ δ)# : δ : I → U a path, δ(0) = α(1)}.

Notice that B(U,α) is non-empty, as α# ∈ B(U,α) since α# = (α ∗ eα(1))#.
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Claim 1: if β ∈ P has β# ∈ B(U,α), then α# ∈ B(U, β) and B(U,α) = B(U, β).

To see this, notice that β# = (α ∗ δ)# for some δ : I → U with δ(0) = α(1), δ(0) = δ(1) = β(1), so
Observation 2 gives

(β ∗ δ)# = (α ∗ δ ∗ δ)# = α#.

Hence α# ∈ B(U, β). Given any (β ∗ γ)# ∈ B(U, β), where γ : I → U is a path with γ(0) = β(1),
we have

(β ∗ γ)# = (α ∗ (δ ∗ γ))# ∈ B(U,α).

Thus B(U, β) ⊆ B(U,α), and symmetry gives the reverse inclusion.

Claim 2: we check that {B(U,α)} forms a basis for the topology on E.

It is straightforward to see that they cover E, so we need only check that given any two B(U1, α1),
B(U2, α2) with non-empty intersection, there exists B(V, β) ⊆ B(U1, α1) ∩ B(U2, α2). To see this,
given β# in the intersection, Claim 1 gives that B(Ui, α1) = B(Ui, β) for i = 1, 2. Now choose an
open and path connected set V ⊆ U1 ∩U2 containing β(1). Then by definition, B(V, β) ⊆ B(Ui, β)
for i = 1, 2, as desired. Hence, there is a unique topology on E for which the B(U,α) form a basis.

We now show that p is an open map. In particular, we show that for any B(U,α) with U open
and path connected and α(1) ∈ U , that p(B(U,α)) is open in B. Given some x ∈ U , choose a path
δ : I → U with δ(0) = α(1) and δ(1) = x. Then (α ∗ δ)# ∈ B(U,α) and

p((α ∗ δ)#) = (α ∗ δ)(1) = δ(1) = x.

Thus, U ⊆ p(B(U,α)). Conversely, p(B(U,α)) ⊆ U , as given (α ∗ δ)#, we have

p((α ∗ δ)#) = δ(1) ∈ U.

Thus, p is an open map. This seems useless right now, but will be used shortly.

We now show p is continuous. Given any open set W ⊆ B open, we want to show p−1(W ) ⊆ E is
open. Let α# ∈ p−1(W ) be given, so that p(α#) = α(1) ∈ W . By local path connectedness of B,
there is some open and path connected set U so that α(1) ∈ U and U ⊆ W . Then α# ∈ B(U,α) ⊆ E
(using the constant path) and p(B(U,α)) = U ⊆ W , so B(U,α) ⊆ p−1(W ).

We now have p is well-defined, continuous, and surjective. We show p is a covering space. Given
b ∈ B, we find an open set U containing b that is evenly covered. Since B is semilocally simply
connected, there is an open set U containing b with U path connected (up to replacing U with the
path component) and

ι∗ : π1(U, b) −→ π1(B, b)

is the trivial homomorphism.

Claim 3: we have p−1(U) =
⋃

αB(U,α) over all paths α : I → B with α(0) = b0 and α(1) = b.
Note we are using the U from above here.

Given any such path α, we already have p(B(U,α)) = U , so

B(U,α) ⊆ p−1(p(B(U,α))) = p−1(U).
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Taking the union over all such α, we have
⋃

αBU,α ⊆ p−1(U). Now given β# ∈ p−1(U), we have
β(1) = p(β#) ∈ U . Choose δ : I → U with δ(0) = b and δ(1) = β(1). Define α := β ∗ δ. Then
α(0) = b0 and α(1) = b, and

[α ∗ δ] = [β ∗ δ ∗ δ] = [β],

so by Observation 1, β# = (α ∗ δ)#. Hence, β# ∈
⋃

αB(U,α).

Notice that
⋃

αB(U,α) (over all such α) is disjoint, as if β# ∈ B(U,α1) ∩ B(U,α2), then Claim 1
gives that

B(U,α1) = B(U, β) = B(U,α2).

Hence p−1(U) =
∐

αB(U,α).

We show now that p : B(U,α) → U is a homeomorphism, so that p is indeed a covering space.
We do know that this map is continuous, open, and surjective. It remains to show injectivity.
Suppose p((α ∗ δ1)#) = p((α ∗ δ2)#), so δ1(1) = δ2(1), where δi : I → U satisfy δi(0) = α(1) = b and
δ1(1) = δ2(1). In particular, δ1∗δ2 is a loop in U at b, so [δ1∗δ2] ∈ π1(U, b). But π1(U, b) → π1(B, b)
is trivial by semilocal simply connectedness. Thus, δ1 ∗ δ2 ≃p eb in B, so [α ∗ δ1] = [α ∗ δ2], and
hence (α ∗ δ1)# = (α ∗ δ2)#.

Now observe that E is locally path connected, since B is locally path connected and p is a local
homeomorphism. It is trickier to show that E is path connected. Since eb0 ∈ P, we have e0 :=
(eb0)

# ∈ E, and p(e0) = eb0(1) = b0. Given a path α : I → B with α(0) = b0 and a constant
c ∈ [0, 1],

αc : I −→ B,

t 7−→ α(ct)

which is a path with αc(0) = α(0), αc(1) = α(c). Note that α0 = eb0 and α1 = α. Now let

α̃ : I −→ E.

c 7−→ (αc)
#

Then α̃ is a map of sets, and {
α̃(0)− (α0)

# = (eb0)
# = e0,

α̃(1) = (α1)
# = α#.

Moreover, p ◦ α̃ = α, since

(p ◦ α̃)(c) = p(α̃(c)) = p((αc)
#) = αc(1) = α(c)

for every c ∈ I. We need to show α̃ is continuous. Given 0 ≤ c < d ≤ 1, let δc,d = α|[c,d]
reparametrized to I. Then αd = δ0,d and αc ∗ δc,d differ only by reparametrization. Thus, αd ≃p

αc ∗ δc,d. Given c ∈ I, we show α̃ is continuous at c. Take α(c) ∈ U ⊆ B for an open and path
connected set U , and define W = B(U,αc) (which is open in E). Observe that α̃(c) ∈ W . Since α
is continuous, there is ϵ > 0 such that if |t− c| < ϵ, then α(t) ∈ U . We need to show that if d ∈ I
satisfies |d− c| < ϵ then α̃(d) ∈ W , which shows that α̃ is continuous at c. If d = c we are done. If
d > c, call δ = δc,d, so

α̃(d) = (αd)
# = (αc ∗ δ)#,
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by Observation 1. Since δ = α|[c,d], we then have δ(I) ⊆ U . Hence α̃(d) ∈ B(U,αc). A similar

argument works for the d < c case. Thus, α̃ is a path from e0 to α#. Since everything is connected
to e0, E is path connected.

To conclude, we need to check that p∗π1(E, e0) = H. Let α : I → B be a loop in B at b0
and α̃ : I → E its lift startin at e0, where we use the lifting properties of covering spaces (note
uniqueness). Then [α] ∈ p∗π1(E, e0) if and only if α̃ is a loop in E at e0. We have α̃(0) = e0 and
α̃(1) = α#, so α̃ is a loop if and only if α# = e0 = (eb0)

#. But this is true if and only if α ∼ eb0 ,
which is true because the endpoints agree and [α] = [α ∗ eb0 ] ∈ H.

The uniqueness of (E, e0) (up to equivalence) has already been proved. □

To summarize the proof, we have the following bijections.

• We assume B is path connected, locally path connected, and semilocally simply connected.
Then there is a bijection from subgroups H ⊆ π1(B, b0) with basepoint preserving equivalence
classes of covering spaces p : (E, e0) → (B, b0) with E path connected. Here, (E, e0) maps to
p∗π1(E, e0).

• There is a bijection between conjugacy classes of H ⊆ π1(B, b0) and equivalence classes of
covering spaces p : E → B with E path connected. Here, E maps to p∗π1(E, e0) where
e0 ∈ p−1(b0) is any base point.

We call a covering space p : E → B with E path connected a universal cover of B if E is simply
connected. Of course, p∗π1(E, e0) is trivial, so p is unique up to equivalence by the second bijection
above (if it exists).

Corollary. If B is path connected and locally path connected, then B has a universal covering if
and only if B is semilocally simply connected.

Proof. If B has a universal covering, then we already showed this. Conversely, the classification
theorem applied to H = 0 gives a covering space p : E → B with p(e0) = b0, E path connected,
and p∗π1(E, e0) = 0. But p∗ is injective, so π1(E, e0) is trivial. □

Remark. Every n-manifold M that is path connected has a universal covering.

Example. The universal cover of S1 is the usual covering space p : R → S1. ⋄

Example. The universal cover of Tn is the usual covering space p : Rn → Tn. ⋄

Example. For n ≥ 2, the identity Sn → Sn is the universal cover. ⋄

learn about sheets for the final (in preparation worksheet)
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